点积

diǎn jī
  • dot product;scalar product
点积点积
点积[diǎn jī]
  1. 但是你会发现,这个方法会让问题更简单,那么,什么是“点积”?

    But , you will see that notation somehow helps to make it more straightforward So , what is dot product ?

  2. 所以我们现在有了一个点积为,这告诉我们两者是垂直的。

    OK , so now if we have a dot product that 's zero , that tells us that these two guys are perpendicular .

  3. 自由模Zm~n上点积的若干性质

    Some properties of the dot product over the free module Z_m ~ n

  4. 所要做的功,就等于A到B的,我的力的积分,这是个点积。

    So the work that Walter Lewin has to do to bring it from A to B is the integral in going from A to B of my force , dx .

  5. 通过核技巧,只需在原空间进行点积运算,便可使第一主成分的贡献率达到90%以上,能有效避免PCA中因各指标贡献率过于分散而影响评价效果。

    We can make the first principal component contribute to 90 % by choosing the suitable kernel function and point product computation only .

  6. 如果我用OP·A我就得到了,那么OP和A的点积是0代表了什么呢?

    If I take the dot product But now , what does it mean that the dot product between OP and A is zero ?

  7. 该方法基于MDL算法的连续搜索版本,利用多向量点积份额协议计算多向量点积和结构熵,并将其应用到网络的构建过程中。

    In this method , private generalized scalar product share protocol is deployed to compute generalized scalar product and empirical entropy , which can be used in the process of constructing network .

  8. 研究FIR、FFT、点积等算法在龙腾-DSRU上的映射,其中FFT算法在龙腾-DSRU上的映射完全避免了操作数读取按位序取反的寻址方式,最多可实现1024点复数FFT运算。

    · Research of some important algorithms ( FIR , FFT and dot-product ) mapping on the " Longtium-DSRU " model . The operands ' bit-reversed addressing method is avoided in the mapping of FFT algorithms , and it could realize 1024-point complex number FFT operation in the most .

  9. 恶意模型下保密点积协议的设计与分析

    Design and analysis of private-preserving dot product protocol under malicious model

  10. 其中我们还给出了一个安全的多方点积协议。

    And we also present a multi-party security scalar product protocol .

  11. 举一个点积的,现实例子。

    Let us take a down-to-earth example of a dot product .

  12. 另一个定义,点积的方法。

    There is another way that you can find the dot product .

  13. 现在我们讲讲点积。

    And let 's now talk about dot products .

  14. 指定的向量的点积。

    The dot product of the specified vectors .

  15. 功和能都是点积。

    Work and energy are dot products .

  16. 跟点积一样-,我会教你们-,两种方法。

    I 'm going to teach you just like with the dot product two methods .

  17. 点积是三个标量的乘积,所以是个标量。

    The dot product , being the product of three scalars , is a scalar .

  18. 这就是点积。

    That is the dot product .

  19. 随机点积图理论是近年来兴起的随机图理论中的重要的研究分支。

    Random dot product graph is one of the important branches in random graph theory area .

  20. 该算法在本文提出的改进的向量空间模型的基础上,又引入了安全点积计算方法。

    The algorithm introduces secure dot-product computation into the improved Vector Space Model which is above-mentioned .

  21. 可以直接用点积来,找到这个角的大小,那么,怎么找呢?

    We can just find the angle using dot product So , how would we do that ?

  22. 用矢量点积求立方体的两条对角线所夹的钝角。

    Use the vector dot product to find the obtuse angle between two diagonals of a cube .

  23. 提高椭圆曲线点积运算的效率是椭圆曲线研究的一个核心问题。

    To improve the efficiency of the algorithm of point multiplication on elliptic curves is a key problem .

  24. 用单位向量点积法求空间连杆机构中间构件的位置参数

    Solving the displacement parameters of the connecting bars of spatial linkages by the dot product of two unit vectors

  25. 这是平面法向量,和沿直线向量的点积。

    It 's the dot product between the normal vector of a plane and the vector along the line .

  26. 因为标量与坐标系无关,故两个矢量的点积称为标量不变量。

    Since scalars are independent of the coordinate system , the dot product of two vectors is called a scalar invariant .

  27. 提出了一种小指数点积核函数。

    The main contributions of this thesis are as follows : 1 、 A kernel function based on fractional inner-product is presented .

  28. 支持向量机利用核函数代替高维特征空间的点积运算,巧妙地解决维度问题,适合处理高维以及不均衡数据的异常检测问题。

    Support vector machine use kernel function instead of point multiply in high dimensional feature space , perfectly solving the dimension problem .

  29. ,我在我的讲题里,随机扫描了一些,现在开始讨论点积。

    I scan it a little bit in a random way over my topics , so let 's now talk about dot products .

  30. 可以把这些用向量形式重新写下来,就是梯度向量和位置改变量的点积。

    And I can rewrite this in vector form as the gradient dot product the amount by which the position vector has changed .