弧段

  • 网络arc
弧段弧段
  1. 在此基础上,提出了一种顾及导航转向限制的弧段Dijkstra算法。

    An arc based Dijkstra algorithm for turning penalty is presented to take advantage of this method .

  2. 基于STK的不同类型卫星测量弧段定轨结果仿真分析

    Simulation Analysis of Orbit Confirmation Results for Telemetry Arc Segment of Different Satellites Based on STK

  3. 图的节点-弧段联合结构表示法及其在GIS最优路径选取中的应用

    United Structure of Point-Arc for Network Graph and It 's Application in GISs Shortest Path Searching

  4. 钢板卷制汽封圈在切割成弧段时发生不同程度的收缩变形。采用X射线法对汽封圈的制造过程进行了跟踪测试。

    This paper mainly illustrates the full tracing test for steam seal ring made by rolling while being manufactured by X-ray .

  5. 由于ArcList记录了弧段的双向信息,虽然开支了一定的存储空间,但提高了搜索效率。

    Although some extra storage spaces were used , the search efficiency was enhanced because the two-way information of arcs was recorded with Arc_List .

  6. 开口弧段的非正则型双周期Riemann边值问题

    On Non-Normal Type Doubly - Periodic Riemann Boundary Problems Along Open Arcs

  7. 一类开口弧段的Riemann边值问题的逆问题

    Aon the Riemann boundary value inverse problems for a class of open arcs

  8. 一种带平方根的Riemann边值问题在开口弧段上的解法

    Solution of One Kind of Riemann Boundary Value Problem with Square Roots on an Open Arc

  9. 本文探讨了开口弧段的非正则型的双周期Riemann边值问题求解问题及可解条件。

    In this paper , we discussed the solution of non-normal type doubly - periodic Riemann boundary value problems along open arcs .

  10. 即用两个数组来存储及管理交通网络数据,一个用来存储和弧段相关的数据(ArcList),另一个则存储和顶点相关的数据(NodeIndex)。

    That was using two arrays to store and manage traffic network data , one of them ( Arc_List ) was to store the arcs data , and the other ( Nodelndex ) was to store related node data .

  11. 首先,考虑了带平方根的Riemann边值问题在一条开口光滑弧段上的解法。

    Firstly , the solution of a kind of Riemann boundary value problem with square roots on an open smoothly arc is considered .

  12. 综合[1,2]给出新的角特征矢量,并生成角点特征序列CS和弧段特征序列SS。

    Basing on [ 1 , 2 ] new corner feature vetor were given , and by which corner feature series CS and curve segment feature series SS are constructed .

  13. 一般情况的(封闭或开口弧段曲线)含Hilbert核的奇异积分方程:的求解问题,主要通过转化为黎曼边值问题来研究。

    General ( closed or open arc curve ) containing Hilbert kernel singular integral equation : Solving the problem , mainly through into Riemann value problem to study .

  14. 利用两个短弧段的天基测角资料实现对GEO空间目标的轨道确定是天基空间目标监视系统需解决的重要问题之一。

    Orbit determination for GEO objects using two short arcs from space based optical observations plays a key role in the space-based space surveillance systems .

  15. 避免了复杂的三角函数计算,而且该算法还可以在GIS的拓扑数据结构建立过程中,快速地构建与同一结点相连的所有弧段间的邻接关系,为拓扑结构的快速建立创造了条件。

    Furthermore , this method can rapidly construct the adjacency relationship of all the arcs linked with the same node , in the construction of topological data structure in GIS , which is helpful to the rapid construction of topological structure .

  16. 考虑重力、离心力及曲率的影响,建立了溢流坝反弧段边界层动量积分方程及连续方程,应用Runge-Kutta法进行了数值求解,并将计算结果与模型试验结果进行了对比。

    Considering influences of gravity , centrifugal force and curvature , the momentum integral equation and continuity equation were established , then solving them with the Runge-Kutta method .

  17. 本文分析了气垫带式输送机在凸凹弧段运行时,气垫场的压力、压力梯度的分布规律,并讨论了凸凹弧段曲率半径R1,胶带张力对气垫场主参数的影响。

    The paper analyses the distribution regulation of air cushion field press and press grade in convex curve and concave curve of air cushion belt conveyor and discusses the curve radial R1 and the effect of belt tension on air cushion field major factors .

  18. 同精密星历相比,2天轨道弧段的定轨精度为1~4m(坐标中误差)。

    Compared with the precise orbit , the accuracy of the determined 2 day arcs of the orbits is 1 ~ 4m ( standard deviation in coordinates ) .

  19. §2利用提升引理在圆周上定义了Markov映射;特别考虑了把相邻分点之间的弧段映满圆周并环绕圆周若干次的Markov映射;

    In § 2 we define Markov maps on S ~ 1 through lifts on R while the Markov maps which take an arc between two adjacent partition points onto the circle and make it surround the circle several times are taken into special consider .

  20. 论文分析了航天测控系统测控通信业务的任务需求,定义任务可靠性模型,用XML进行模型描述,划分弧段,得到具有静态可靠性逻辑结构的子阶段,并分别建立各个阶段的Markov模型。

    In this paper , we analyze the task requirement of communication business in TT & C , define the mission reliability model , describe the model in XML , subdivide the arc , get a static logical structure of reliability in sub-stage and establish the Markov model accordingly .

  21. 基于缓和曲线参数方程可以用复合Simpson公式表示,推出了绘制完整缓和曲线所需等弧段数n和绘制不完整缓和曲线所需等弧段数n1的严密公式和简捷实用公式。

    Considering the fact that the parametric equations of easement can be expressed by compound Simpson formulae , the rigorous or simple formulae for determining the number of equal-arc for fitting complete easement , and for determining the one for incomplete easement are derived .

  22. 卫星单圈单弧段观测数据误差估计

    The Error Estimate to the Single Circle Observation Data of Satellite

  23. 龙抬头明流泄洪洞反弧段下游边墙防蚀探讨

    Study on Cavitation-protection for Downstream Sidewalls of Ogee-section in Spillway Tunnels

  24. 约束条件下水平冲量多弧段交会机动方案设计

    The Horizontal Impulse Multi-Segmental Arcs Rendezvous Project Designed in Restricted Condition

  25. 编队卫星短弧段相对轨道确定方法研究

    Study on Relative Orbit Determination Method of Satellites Formation with Short-arc

  26. 通过雷达短弧段测量数据来确定轨道的新方法

    A New Method for Determining Orbit Using Radar Short Arc Measurement

  27. 反弧段紊流边界层研究成果综述

    Summary on the Research of Turbulent Boundary Layer in the Bucket

  28. 三弧段等距型面联接强度的光弹实验研究

    Research of photoelasticity experiment on link intensity of 3-arc distance-equating surface

  29. 溢流反弧段紊流边界层变化规律的数值模拟

    Numerical Simulation of Development of Boundary Layer in Bucket of Spillway

  30. 陡坡明槽反弧段空化问题的试验研究

    Laboratory Study of Cavitation Problems of the Invert in Steep Open Channels