质点组

  • 网络Particle group;a group of particles
质点组质点组
  1. E~n中质点组的最小转动惯量轴

    Axes of Minimal Moment of Inertia for Particle Set in E ~ n

  2. 关于质点组几何不等式的应用

    Applications of Geometric Inequalities Concerning the Mass Points System

  3. 关于相对论中的质点组动量守恒定律

    On the Conservation Law of Momentum in Relativity

  4. 有限质点组的最小转动惯量平面

    A Plan On Moment of Minimal Intertia of Finite Particle Set in E ~ n

  5. 分析了一种对平行轴定理的不正确认识,讨论了质点组对质点的角动量定理的应用形式

    A fault about parallel axis theorem is analysed and the application of angular momentum theorem with stationed personnel is discussed

  6. 运用非惯性参照系中质点组的动量定理可以方便处理非惯性参照系中的一些复杂问题。

    Some complex problems can also be solved by using the theorem of momentum of particle group of the non-inertial reference frame .

  7. 其特殊情形即是惯性系中质点组的动量定理。

    As a special case , the theorem of momentum of particle group of the inertial reference frame is included in the theorem obtained .

  8. 本文从质点组力学中能量转换的角度讨论蛇运动的动力的性质。

    In this paper , from the view of transformation of energy , We discuss the properties of power in the motion of snakes .

  9. 利用动量守恒定律分析质点组问题时,必需注意质点组各质点速度的空间统一性和时间统一性。

    It 's necessary to pay attention to the unity of time and space for each particle velocity , when analysing the question for particle system use momentum conservation law .

  10. 本文从爱因斯坦速度变换式、相对论中的牛顿第二定律及普遍的能量守恒定律导出质点组的动量守恒定律。

    In this paper , the conservation law of momentum is derived from Eins - tein 's transformation law of velocities , Newton 's second law in relativity and general conservation law of energy .

  11. 质点组内力的功改变质心动能的条件水旱轮作条件下免耕水稻土肥力质量演变趋势研究

    The Condition of Changing the Barycentric Energy of Motion by the Work of the Endogenous Force in Mass Points Group ; Study on the Evolution Trend of Soil Fertility in the No-tillage Soil of Paddy Field under Conditions of Paddy-Upland Rotation Systems

  12. 质点与质点之间由一组虚拟的切向键和法向键连结。

    These mass particles were connected with virtual normal bonds and tangent bonds .

  13. 应用非惯性参照系中质点牛顿第二定律,推导出一般非惯性参照系中质点组的动量定理。

    A theorem of momentum of particle group of the non-inertial reference frame is deduced by applying Newton 's second low of motion of non-inertial reference frame .