纳什均衡点
- 网络Nash Equilibrium;nash equilibrium point
-
证明了该博弈算法的纳什均衡点的存在性、唯一性及Pareto有效性。
We prove the existence and uniqueness of Nash Equilibrium point in this game algorithm .
-
运营商通过边际效用调节自身价格,在纳什均衡点处能够取得最优的价格策略。
Afterwards , network operators iteratively adjust respective price by marginal utility , and capture optimal pricing strategies at Nash Equilibrium point .
-
当目标研发市场进一步扩大时,就会出现两个纳什均衡点。此时企业A和B只有一方可以选择研发而另一方相应的选择跟随。
As the target market value further increased , there will be two Nash equilibriums , one party may choose to develop and the other party has to choose to follow .
-
搏弈分析结果:(1)医疗保险机构与医疗服务机构之间博弈过程中,(P1,P2)是医疗服务机构和医疗保险机构博弈纳什均衡点。
The game analysis results : ( 1 ) ( P1 , P2 ) is the Nash equilibrium of medical service institutions and medical insurance institutions game .
-
为了克服求解纳什均衡点的复杂性,本文采用了一步纳什均衡的方法。
In view of the complexity of calculating Nash equilibria points , one-step Nash equilibrium approach is adopted in the algorithms .
-
但在多轮博弈的模型中伯川德-施塔贝格均衡点并不稳定,最终会趋向于伯川德-纳什均衡点。
The Bertrand-Stackelberg equilibrium profit , which is not stable in the multi-round model , will eventually come close to Bertrand-Nash equilibrium profit .
-
然后证明纳什均衡点能最大化整个异构无线网络的吞吐量,保证了纳什均衡的有效性。
Moreover , it is proved that the throughput of whole HWNS can be maximized after reaching Nash Equilibrium , which ensures the efficiency of Nash Equilibrium .
-
基于非合作博弈的功率分配模型中的纳什均衡点的存在性和唯一性得到了证明,并给出了具体的分布式迭代求解算法。
The existence and uniqueness of Nash Equilibrium for power allocation model which is based on Non-Cooperative Game is proven , and accordingly a distributed algorithm is proposed .
-
分析的结果表明:在规则导向会计准则和严格会计监管之下的纳什均衡点是社会效用最高的一种情况。
From the results , we can get that the Nash equilibrium under the rules-based accounting standards and the strict accounting supervision is the point of maximum society value .
-
把该算法应用于汽车主动悬架设计出基于纳什均衡点的H2/H∞输出反馈控制器。
The algorithm is applied to a vehicle active suspension system , and H-two / H-infinity output feedback controller , based on the Nash equilibrium point , is then constructed .
-
本文依据博弈理论和方法,分析了优质猪肉供应链中养猪场和公司行为选择的机理,导出了双方行为选择的混合战略纳什均衡点。
The mechanism of behavior selection of company and pig farm in high quality pork supply chain is analyzed , and the equilibrium point of behavior selection of them is obtained through game theory .
-
利用博弈论,分析了双寡头竞争环境下企业金融投资和实业投资的比例关系,推导出最佳投资比例的纳什均衡点。
By using the game theory , we analyze the ratio of industrial investment to financial investment for companies under double oligarch competition condition . We obtain the Nash equilibrium point of optimal investment ratio .
-
研究方法,本文从需求函数的角度出发,分别对零售商的定价以及订货策略两个角度讨论分析了各个零售商的最佳决策博弈策略以及在各种不同参数情形下的纳什均衡点情况。
Second is the research method . This paper starts from the demand function and analyze the optimal decision strategy on pricing and ordering inventory for the two retailers and the Nash Equilibrium under different parameters respectively . 3 .
-
首先,本文给出了以对策论为基础的网络资源分配的模型,讨论了纳什均衡点的性质和帕累托最优的条件,从理论上分析了网络拥塞的公共地悲剧和拥塞计费的作用。
In the first place , we formulate a model of network resource allocation in non-cooperative game , giving a characterization of Nash equilibrium and Pareto optimization , analyzing the network " tragedy of the commons " and the benefit of congestion pricing .
-
本文针对当前此项研究中存在的输电线路约束难以计及和忽视需求方参与市场竞争的问题进行了研究,开发了三种不同投标策略下的纳什均衡点的有效计算方法。
But it is difficult to take the transmission line constraints and demand side bidding into consideration . In this dissertation , an attempt is made to solve these problems . We develop effective calculating methods of Nash Equilibrium corresponding to three different bidding strategies .
-
第一个博弈是一个带有定价的非合作速率控制算法,它为用户设置准则,使用户能够达到唯一的纳什均衡速率操作点。
The first game is a non-cooperative rate control algorithm with pricing , which sets rules for the users in order to make them reach the unique rate operating point of Nash equilibrium .
-
仿真结果显示,所提出的算法能够达到纳什均衡,且在纳什均衡点处,主用户和次用户同时达到最大正效用。
The simulation result indicates that the proposed algorithm can reach the Nash equilibrium , and the primary systems and cognitive systems get the maximum positive utility in the equilibrium point as the same time .
-
应用压缩映象定理,证明了一类多人非合作对策纳什均衡存在性的两个充分条件,并由此得到了纳什均衡点的迭代算法。
Applying the compressing reflection theorem , we approve the tow sufficient conditions of the existence of Nash equilibrium in a countermeasure with uncooperative muti-participator , then according to this , we get the iterative arithmetic of Nash equilibrium .
-
纳什均衡作为博弈论中最重要的概念,可以表示电力市场竞争的最终结果,因而纳什均衡点的计算方法成为研究电力市场的基础性解析工具同时也成为研究的热点之一。
Nash equilibrium is one of the most important concepts in game theory . It represents final result of competition in power market . So the algorithm for finding Nash equilibrium becomes an important analytical tool and a key point of the research works for power market .