栅氧化层

  • 网络Gate oxide;gate;gate oxide layer
栅氧化层栅氧化层
  1. 含N超薄栅氧化层的击穿特性

    Breakdown Characteristics of Nitride Ultra - Thin Gate Oxide

  2. MOS辐射损伤的栅氧化层厚度效应

    The effects of gate oxide thickness on radiation damage in MOS system

  3. 沟道大电流感应n沟金属-氧化物-半导体场效应晶体管栅氧化层的加速击穿

    Channel-Current-Induced Gate-Oxide Breakdown Acceleration in N-Channel MOSFET 's

  4. 双层氧化硅(富硅氧化硅和热氧化硅)栅氧化层MOS场效应晶体管的研制

    Fabrication of Silicon & rich SiO_2 and Thermal SiO_2 Dual Dielectric Gate Oxide MOSFET 's

  5. 这是因为所有影响CMOS器件1/f噪声的因素都分布在栅氧化层-硅界面附近。

    This is because all factors which affect CMOS device 1 / f noise are distributed in the gate oxide-silicon interface nearby .

  6. EEPROM中栅氧化层的可靠性研究

    Study of the Reliability of the Gate Oxide Related to EEPROM

  7. 研究了恒压应力下超薄栅氧化层n型金属-氧化物-半导体场效应晶体管(n-MOSFET)软击穿后的导电机制。

    The conduction mechanism of ultra-thin gate oxide n-metal-oxide-semiconductor field effect transistor ( n-MOSFET ) after soft breakdown is studied in this paper .

  8. 薄栅氧化层斜坡电压TDDB寿命评价

    Lifetime Assessment of Thin Gate Oxides by Voltage Ramp TDDB Test

  9. 薄栅氧化层斜坡电压TDDB击穿参数的研究

    Voltage Ramp TDDB Test and Research of the Parameters of Breakdown

  10. 随着集成电路的快速发展,Flash存储器的特征尺寸不断缩小,为了保持集成电路的性能,相应的栅氧化层厚度也不断减小。

    With the rapid development of integrated circuits , Flash memory feature sizes continue to shrink . Accordingly the thickness of gate oxide should also be reduced to keep devices function properly .

  11. 超薄平板等电聚焦电泳薄栅氧化层的TDDB研究

    SUPER - THIN LAYER ELECTROFOCUSING Research on TDDB of thin gate oxide

  12. 电压应力下超薄栅氧化层n-MOSFET的击穿特性

    The breakdown characteristics of ultra-thin gate oxide n-MOSFET under voltage stress

  13. 快速热氮化改善n-MOSFET栅氧化层的加速击穿

    Improvement of gate-oxide breakdown in n-mosfet 's using rapid thermal nitridation

  14. 与普通单一电容型MOS调制器相比,由三层栅氧化层形成的新型MOS电容型调制器提高了调制效率。

    Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure , which boosts the modulation efficiency compared with a single MOS capacitor .

  15. 超薄栅氧化层n-MOSFET软击穿后的导电机制

    Conduction mechanism of ultra-thin gate oxide n-MOSFET after soft breakdown

  16. 栅氧化层TDDB可靠性评价试验及模型参数提取

    TDDB Test and Parameter Extraction of Gate Oxide

  17. 薄栅氧化层的TDDB研究

    Research on TDDB of thin gate oxide

  18. 分别研究了FN隧穿应力和热空穴(HH)应力导致的薄栅氧化层漏电流瞬态特性。

    FN tunneling and hot hole ( HH ) stress induced leakage current ( SILC ) transient characteristics in thin gate oxide are investigated .

  19. 本文通过衬底热载流子注入技术,研究了热载流子增强的超薄栅氧化层TDDB效应。

    Hot-carrier enhanced TDDB effect of ultra-thin gate oxide is investigated by using substrate hot-carrier injection technique .

  20. 深入研究了MOS结构中薄栅氧化层在高电场下的退火效应,对氧化层陷阱电荷的退陷阱机理进行了深入探讨。

    High electric field annealing effect in thin gate oxide of MOS structure is studied in depth , and the detrapping mechanisms of trapped charge in the gate oxide are investigated .

  21. 研究了栅氧化层厚度,漂移区注入剂量,P阱注入剂量,SOI厚度,场板长度等五个结构工艺参数对Cgd的影响;

    Effects of the thickness of gate oxide and SOI layer , implant dosages of the drift region and P-well , and the field-plate length on C_ gd are also discussed .

  22. 对测试结果的分析说明:由于刻蚀对SiC造成的表面损伤严重影响了栅氧化层的质量,导致栅电压的控制能力很弱。

    Measurement and analysis results show that the serious effect of etching process on the surface of SiC is the cause of inferior quality of gate oxide which strongly depresses the control of gate voltage on the channel .

  23. 利用建立的阈值电压模型,本文还模拟了器件关键参数(如栅氧化层厚度、应变硅厚度、Ge组分等)对器件性能的影响。

    With the established threshold voltage model , the effects of changes in key device parameters ( such as gate oxide thickness , strained-silicon thickness , composition of Ge , etc. ) on device performance are also simulated .

  24. 采用恒定电流应力对薄栅氧化层MOS电容进行了TDDB评价实验,提出了精确测量和表征陷阱密度及累积失效率的方法。

    TDDB evaluation experiments are implemented on the thin gate oxides MOS capacitor , and a method of precise measurement and characterization the trap density and accumulative failure are presented .

  25. 在先进CMOS中,传统靠减薄栅氧化层厚度的方法已经不能满足器件的需求。于是人们不得不通过其它方法来改善器件性能,如高介电常数栅氧技术和应力增强技术。

    In advanced CMOS , it can not fit device performance requirement only by shrink gate oxide thickness , so people have to find other way to improve device performance , such as high-K metal gate material application and stress enhancement technology .

  26. 因为这时候栅氧化层的厚度已经很薄(20A),栅极漏电流中的隧道穿透机制已经起到主导作用。

    Because at that time the gate oxide thickness is already very thin ( 20 A ), the tunnel leakage current through mechanism has play a leading role .

  27. 文章着重于薄栅氧化层TDDB可靠性评价的斜坡电压试验方法的研究,基于斜坡电压实验,提取模型参数,分别利用线性场模型和定量物理模型,外推出工作电压下栅氧化层的寿命。

    Model parameters are extracted from the voltage ramp test , and the lifetime is extrapolated based on the linear field model and quantitative physical model , respectively .

  28. 这些新的实验结果表明F-N应力导致的薄栅氧化层的击穿不仅由注入的空穴数量决定。

    It is revealed that F N stress induced thin gate oxide breakdown is not simply determined by the total number of the injected holes .

  29. 采用恒定电流应力对超薄栅氧化层MOS电容进行了TDDB评价实验,提出了精确测量和表征陷阱密度超薄栅氧化层经时击穿效应与可靠性仿真技术研究和累积失效率的方法。

    TDDB evaluation experiments are carried out with constant current stress on MOS capacitors with ultra-thin gate oxides , and a method of precise measurement and characterization of the trap density and accumulative failure is presented .

  30. 其击穿电荷要比F-N隧穿的击穿电荷大得多,栅氧化层的击穿电荷量与注入的空穴流密度和注入时空穴具有的能量以及栅电压有关。

    Depending the injected hole flux density , hole energy and the gate voltage , its charge breakdown is much larger than that of F N stress .