全局最优

  • 网络global optimum;Global Optimization;optimum
全局最优全局最优
  1. 该模型是一个NP难整数规划问题,采用遗传算法进行求解,以求得全局最优。

    Genetic algorithm is adopted to solve this problem and find the global optimum solution .

  2. GAEM算法通过GA算法得到EM算法更稳健的参数初始值,并可使EM算法收敛于全局最优。

    The more robust initial values of EM algorithm can be achieved GA algorithm , and can convergence to a global optimum .

  3. QoS全局最优的多目标Web服务选择算法

    Global QoS optimizing and multi-objective Web service selection algorithm

  4. 一种具有全局最优的神经网络BP算法

    Back propagation algorithm of neural network with global optimization

  5. BP网络的全局最优学习算法

    The Gobal Optimization Training Algorithm for BP Network

  6. 基于BOM的(R,Q)订货策略的全局最优解

    Global Optimal Solution to BOM Based ( R , Q ) Ordering Policy

  7. 组合服务中QoS全局最优服务选择算法的改进

    Improvement Based on Web Services Selection Algorithm With Qos Global Optimal In Web Services Composition

  8. 采用可在有限步内找出全局最优解的共轭梯度法(CG)进行寻优。

    The conjugate gradient ( CG ) method is used .

  9. 多传感器全局最优加权观测融合Wiener信号滤波器

    Multisensor Globally Optimal Weighted Measurement Fusion Wiener Signal Filter

  10. 根据问题的最优性和可行性提出一新的区域删除准则以排除问题(P)的可行域中不存在全局最优解的部分,结合区域删除准则和分支定界理论给出新算法。

    New region-deleting principles are proposed based on the optimality and feasibility of the problem so as to delete the subregion without containing the optimal solutions of the problem ( P ) .

  11. PSO算法本质上属于迭代的随机搜索算法,其主要优点在于收敛速度快、能以较大的概率找到优化问题的全局最优解等。

    PSO being iterations random algorithm does better in fast constringency and finding the optimization solution with biggish probability .

  12. 该算法采用半自动方式和基于QoS全局最优的多目标服务选择优化方案来研究大规模服务动态选择问题。

    The algorithm adopts semi-auto mode and the global optimal multi-objective services selection optimization scheme based on QoS to study the large-scale service dynamic selection problem .

  13. 遗传算法(GeneticAlgorithm)仿效生物界中的物竞天择,适者生存的演化法则,是一种通过模仿自然进化过程完成对全局最优解搜索的方法。

    Genetic Algorithm follows the evolution rules of " natural selection , survival of the fittest " in the biological world , which is a method to search the global optimal solution through imitating natural evolution process .

  14. 就FCM算法对初始聚类中心数据点敏感而得不到全局最优解这一问题,提出了一种基于初始聚类中心选取改进的FCM算法。

    Aimed at the problem , this paper presents an improved FCM-algorithm , which based on the initial clustering center .

  15. 优化的BP神经网络可以较好地克服BP网络的缺陷,在滚动轴承故障训练和诊断时,可以找到全局最优值。

    The optimized BP neural network can overcome the defects of BP network better . It can find the global optimal value when train and diagnose the rolling bearing fault .

  16. 针对三站无源定位系统全局最优数据关联的三维(3-D)分配问题,提出一种新的直接求解算法&启发式消元算法。

    Aiming at the three-dimension ( 3-D ) assignment problem of data correlation for three-passive-sensor location system , this paper presents a new direct solution method-heuristic elimination algorithm .

  17. 最后把改进的蚁群优化算法应用到GIS交通网络最短路径问题中,提高了搜索到全局最优解的速度。

    Finally , an improved ant colony optimization algorithm is applied to the GIS transportation network shortest path problem , to improve the speed of the search to the global optimum solution .

  18. BMI问题是NP难问题,对此设计了一种基于混沌优化的算法进行求解,所设计的算法更有效地收敛到全局最优解。

    The BMI problem is an NP hard problem , and an algorithm that based on chaos optimization is designed for solving it .

  19. 对一类多目标DC规划进行讨论,先将其转化为单目标问题,用前面处理单目标方法求解多目标全局最优解。

    Then a class of multi-target DC programming is discussed . It is translated to single-target problem in the first and multi-target global optimal solution is solved with the former solution of single-target .

  20. SA接受新模型的方式使其成为一种全局最优算法,并得到理论证明与实际应用的验证。

    Accepting the new model of SA make it into a global optimal algorithm , and have obtained theoretical proof and verification of practical application .

  21. 文章针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。

    Elastic TSP based on parallel Genetic Algorithm is discussed in this paper . The population diversity is pre-served by applying the elastic strategy .

  22. 模拟退火算法是目前发展较快的智能优化算法,是一种以概率l收敛于全局最优解的全局优化算法。

    Simulated annealing is an intelligent algorithm of developing very fast .

  23. 然后,研究在集中集中式决策时有BOM约束的(R,Q)订货策略的全局最优解的求解方法;

    Fourthly , present a method for calculating the global optimal solution to ( R , Q ) ordering policy with BOM ( Bill of Material ) and random demand in centralized scenario ;

  24. 这种RBF网络分选系统采用改进免疫算法设计RBF网络的隐层参数,可以达到较高的优化效率,使系统结构趋于全局最优。

    In this signal sorting and recognition system , RBF hidden layer is designed by improved immune algorithm , which can reach the optimal structure of the system with high efficiency .

  25. 在结构系统的被动控制中,通过引入遗传算法寻优,获得了不同目标函数下全局最优TMD参数设计方法。

    In the passive control of structural system , the global optimal TMD parameters design method is obtained by introducing the optimization of genetic algorithm .

  26. 由于工作流服务不断增加,服务聚合往往会出现大量的备选方案,用户期望从这些方案中选择满足Qos全局最优的工作流服务聚合流程。

    As a result of the number of workflow service increasing , the service aggregation often has a lot of options , but users expect to get the workflow service process meeting the Qos global optimum .

  27. 应用具有全局最优的BP改进算法,建立了产生混沌序列的神经网络模型(CGNN)。

    A Chaos Generation Neural Networks ( CGNN ) model trained by modified Back Propagation algorithm is proposed in this paper .

  28. 将搜索空间划分成若干个子区域,在各个子区域中均使用标准PSO算法进行寻优,通过比较各个子区域的全局最优解,从而得出整个搜索空间的全局最优。

    It makes the search space some sub-region , uses the PSO algorithm to optimize in each region , compares these sub-region global optimums and finds out the search space global optimums .

  29. 包含延迟、延迟抖动、带宽、丢包率和最小花费等约束条件在内的服务质量(QoS)组播路由问题,是一个NP完备问题,传统方法很难求得全局最优解。

    The least-cost QoS multicast routing problem with delay , delay jitter , bandwidth , packet loss-constrained belongs to NP-complete problem . It 's hard to get the global solution using the traditional algorithm .

  30. 应用SEA优化多峰函数以及多目标优化问题,结果表明,该算法可以大大增加个体的多样性,有效地克服了早熟现象,增大了搜索全局最优解的几率;

    SEA is used to optimize multimodal function and multiobjective function . The results indicate that the algorithm proposed in the paper can increase the diversity of population greatly , overcome the prematurity effectively and therefore has more possibility to find the global optimal solution ;