光谱分类
- 网络spectral classification
-
共生星冷星光谱分类
Spectral classification of the cool companions of symbiotic stars
-
植物有色性状显性遗传的光谱分类
Spectral Classification of Plant Colour Character in Dominant Inheritance
-
利用BP神经网络光谱分类法研究肉品新鲜度
Study on the Fresh Level Analog of the Meat with Artifical Neutral Network
-
高光谱分类EM算法及噪声的处理
Dealing with the Noise and EM Algorithm in Hyperspectral Classification
-
RVM有监督特征提取与Seyfert光谱分类
RVM Supervised Feature Extraction and Seyfert Spectra Classification
-
采用一种新的机器学习算法&支持向量机(SVM)建立不同产地、不同品种苹果的近红外光谱分类模型。
To improve and simplify the prediction model of classification , a new machine learning method called Support Vector Machine ( SVM ) was used to build near infrared ( NIR ) spectrum classification models for apples from different production areas and of different varieties .
-
第三、在上述研究的基础上,采用VC++6.0和Oracle9i作为开发工具,设计并实现了基于约束概念格的恒星光谱分类规则挖掘原型系统。
Third , on the basis of above , the mining system of classification rules for star spectra data based on constrained concept lattice are designed and realized by using VC + + 6.0 and Oracle 9i as development tools .
-
基于径向基函数网络的浮游植物活体三维荧光光谱分类
3D fluorescence spectra classification of phytoplankton based on radial basis function networks
-
包络线消除法及其在野外光谱分类中的应用
Continuum Removal and Its Application to the Spectrum Classification of Field Object
-
基于支持向量机的快速高光谱分类研究
Fast classification of hyperspectral data based on support vector machines
-
浮游植物活体三维荧光光谱分类判别方法研究
Research on Discrimination of 3D Fluorescence Spectra of Phytoplanktons
-
核覆盖算法在光谱分类问题中的研究
Studies of Spectra Classification Based on Kernel Covering Algorithm
-
共生星近红外光谱分类
Spectral classification of symbiotic stars in the nearinfrared
-
基于光谱分类的干涉光谱图像压缩
Interference Spectral Image Compress Based on Classification Algorithm
-
基于小波特征的星系光谱分类
Spectral Classification of Galaxy Based on Wavelet Feature
-
基于广义判别分析的光谱分类
Spectra Classification Based on Generalized Discriminant Analysis
-
结合光谱分类的数据应用,提出了基于最优性能的压缩性能评估方案。
Combined with the spectra classifying application , an evaluation scheme called optimal performance is developed .
-
介绍了将云模型应用到高光谱分类中的详细步骤。
Introduce the detail steps adapting the cloud model to the classification of hyperspectral remote sensing image .
-
结果表明,支持向量机可以建立高精度的苹果近红外光谱分类模型。
The results show that SVM has a perfect performance in establishing the NIR models for apple classification .
-
作者首先介绍分裂窗处理技术和光谱分类技术,而后展示了国家卫星气象中心静止气象卫星沙尘暴自动监测精度的初步检验结果。
This paper presents the applications of split window channel technique and spectral classification technique in dust storm monitoring .
-
研究显示卫星影像的光谱分类在此应用会产生一些实际困难。
Previous studies have shown that the spectral classification of satellite images in this application will encounter some difficulties .
-
提出了一种新的星系光谱分类方法,将星系光谱分为正常星系和活动星系。
An algorithm for classification of galaxy spectra is proposed , which divides the galaxy spectra into normal galaxy and active galaxy spectra .
-
针对光谱分类,提出了一种基于核技巧的覆盖算法&核覆盖算法。
A kernel based covering algorithm , called the kernel covering algorithm ( KCA ), is proposed for the classification of celestial spectra .
-
通过对恒星、正常星系等的实验表明:该方法是有效的,这将对后续的参数测量和基于谱线的光谱分类非常有利。
The experiments on both stars and normal ( galaxies ) show that our method can extract spectral lines accurately , which is helpful to the parameter measure and the automatic ( classification ) of spectra based on spectral lines .
-
无惩罚系数SVM高光谱影像分类算法研究
On SVM Classification Algorithm of Hyperspectral RS Imagery without Penalty Coefficient
-
主要研究了适于解决高维问题的支持向量机(SVM)方法在高光谱图像分类中的应用,分析了核函数选择及参数确定问题。
The problems of kernel function selection and parameter determination are analyzed .
-
基于快速非负矩阵分解和RBF网络的高光谱图像分类算法
A Hyper-spectral Image Classification Algorithms Based on Quick Non-negative Matrix Factorization and RBF Neural Network
-
高光谱影像分类EM算法的完善
Improved EM Algorithm for Hyperspectral Classification
-
一种基于D-S证据理论的高光谱图像分类方法
A Classification Algorithm for Hyperspectral Image Based on D-S Evidential Theory
-
深入研究了在高维多光谱数据分类中,SVM的性能与核函数类型、核函数参数、支持向量(SupportVector&SV)、训练样本数目、数据维数等之间的关系。
The relation between the performance of SVM and kernel function , support vector , training set , data dimension and so on is studied .