频繁项集
- 网络frequent itemset;frequent itemsets;frequent item;frequent item set
-
频繁项集;挖掘;支持度;查询扩展;
Frequent itemset Mining Support Query expansion ;
-
提高频繁项集挖掘算法的效率是关联规则挖掘研究的一个重点领域。
Enhancing the efficiency of frequent itemset mining algorithm is an important area of researching association rule mining .
-
针对文本关联分析中难以确定最小支持度阈值的问题,提出N个最频繁项集挖掘算法。
Research on mining the top N most frequent item sets in text collection .
-
同Apriori算法相比较,该算法能直接查找高次频繁项集,可以有效地屏蔽Apriori算法性能瓶颈。
This algorithm can effectively resolve the bottleneck of Apriori .
-
挖掘关联规则频繁项集的算法研究及其Prolog实现
Research and Realization Using Prolog on Mining Frequent Items Algorithm of Association Rules
-
与CSR相比,算法CR能够缩小频繁项集的候选集的规模,从而提高算法的效率,并且算法CR中的压缩数据库的结构也较算法CSR中压缩数据库的结构更为简练,节省了空间。
It has more efficiency , for it has a better structure in the compressed database , and reduces the scale of frequent item sets .
-
基于FP-Tree的共享前缀频繁项集挖掘算法
Algorithm for frequent item sets mining of sharing prefix based on FP-tree
-
数据预处理用到了聚集、抽样、离散化等方法,关联规则挖掘频繁项集主要用到了Apriori的算法。
In data processing , we use aggregation , sampling and discretization . In association analysis , we mainly use Apriori algorithm .
-
本文利用频繁项集的性质,来优化关联规则挖掘中的一个经典的算法Apriori;
This paper takes advantage of a character of frequent items set to improve Apriori algorithm , which is a classical algorithm of association rules .
-
针对Apriori算法寻找频繁项集问题,通过对事务数据库的布尔化表示,提出了一种直接利用布尔矩阵的行向量去搜寻频繁项集的思想。
An enhanced Apriori algorithm which directly used the row vectors of boolean matrix for transaction databases to find out the frequent item sets was presented in this paper .
-
Apriori算法是经典的频繁项集生成算法,其基本思想是用逐层搜索的迭代方法来生成频繁项集。
The Apriori algorithm is a classical algorithm that generates frequent item-sets . The basic idea of it is to use the layer-by-layer search iterative method for generating the frequent item-sets .
-
详细研究了关联规则数据挖掘,分析了存在的问题和不足,提出了一种频繁项集增量算法,用于对Apriori算法进行改进。
We have researched the related regular data mining , has analyzed existing problem and deficiency , propose one frequent item set increment algorithm , use for , improve to Apriori algorithm .
-
本文论述了关联规则的基本概念、分类、基于频繁项集思想的关联规则挖掘算法&Apriori算法,以及在基础上对Apriori算法的各种改进算法。
This paper introduces basic concepts and classification of association rules . Discussing representative algorithm of mining association rules & Apriori algorithm based on frequency item set idea and some betterment algorithms for Apriori .
-
在准确度大致相当的情况下,由于该方法只需要对数据集进行一次扫描,所以其时间效率明显优于以Greedy算法为代表的基于频繁项集的处理方式,大大降低了算法的复杂度。
In the case of equivalent accuracy , the efficiency of this algorithm is more superiority than the other ones , such as Greedy algorithm based on frequency items , because it need only once scan of the datasets .
-
3研究关联规则Apriori算法,分析了传统的关联规则理论基础、经典算法,探讨了提高Apriori算法效率的几种方法,着重介绍一种不产生候选挖掘频繁项集的方法。
In the paper we research the Apriori arithmetic of association rules , probe into several efficient methods to improve the Apriori arithmetic , and introduce emphatically a mining method without generating candidate frequent itemsets : FP-tree .
-
研究了增量式频繁项集挖掘算法,提出了基于FP-growth的增量式频繁项集挖掘算法,通过与Apriori算法的比较,验证了该算法的高效性。
We research on the incremental frequent item sets mining algorithms and propose a novel algorithm based on FP-growth . After being compared to the Apriori algorithm , the new algorithm was proved to be more efficient .
-
同时,对传统的关联技术中寻找频繁项集的Apriori算法进行改进,减少了待扫描候选项集中候选项的数量,有效地提高了寻找频繁项集的速度。
An improved algorithm originated from Apriori , which is a traditional frequency-item-seeking algorithm of association technology , is given and the improved algorithm can reduce the items to be sought thought the collection of candidate-items and accelerate the seeking speed efficiently .
-
基于故障信息维度表与关系规则维度表应用Apriori算法的频繁项集方法对故障信息进行分析,通过故障匹配、生成候选集、过滤候选集,最后确定故障原因,优选出排除故障方案。
The fault information is analyzed by a set of frequent items with the apriori algorithm based on the dimensionality tables of fault information and association rules . Causes of fault are found and the primary solution is chosen by fault matching , candidate generation and candidate screening .
-
之后,本文采用关联规则挖掘算法Apriori中的频繁项集抽取了专利知识链,并借鉴复杂网络分析中凝聚子群的识别法,以Lambda集合算法完成了专利知识群的识别与计算。
In this research , patent knowledge link has been extracted with frequency item set of Apriori mining algorithms in association rules . Taking example by identification methods of complex network analysis , patent knowledge group has been recognized and calculated with Lambda Set from social network analysis .
-
现有的挖掘负关联规则以及含负项目的关联规则算法为数不多,而且本质上都是基于Apriori思想的迭代算法,需要对数据集进行多次扫描,同时生成大量的候选频繁项集。
Not only the existing algorithms of mining negative association rules and association rules with negative items are very few , but also they are essentially based upon the iterative algorithms of Apriori idea , which needs multiple times scanning data sets and generating large amounts of frequent candidate sets .
-
GAPNAR算法首先利用Apriori算法生成频繁项集,之后利用基于相关系数的NRGA算法生成含有所有负项的关联规则,在所有规则生成后,利用遗传算法优选生成的规则。
The GA_PNAR algorithm firstly uses the Apriori algorithm to generate frequent item set , and then generates all negative association rules , through the NRGA algorithm based on correlation coefficient . When all the associations come out , genetic algorithm is adopted to optimize these rules .
-
为了进一步提高频繁项集挖掘算法的可扩展性,对模式树进行了细致的研究,在此基础上提出了一种挖掘频繁项集的新算法,FP-DFS算法。
To make further improvement on the scalability of the algorithm , we make a further study on the pattern tree , and propose a new algorithm called FP-DFS based on the study .
-
对传统集合操作进行了扩展,提出了基于扩展集合操作的最大频繁项集生成算法FIS-ES,并从理论上对算法的复杂度进行了详细的分析。
The traditional set operator has been extended firstly , the FIS-ES algorithm has been presented on the basis of extended set operator . The detailed analysis about the complexity of algorithm is done in theory and experiment .
-
基于频繁项集的降维在数据挖掘中的应用
Frequent item sets based dimensionality reduction algorithm in data mining research
-
一种基于二进制编码的频繁项集查找算法
A Algorithm of Finding Frequent Item Sets Based on Binary Coding
-
多维频繁项集计算方法及应用
The way to mine multidimensional frequent items and its application
-
一种基于多层模糊模式的频繁项集剪枝算法的优化
An Efficient Arithmetic of Pruning Frequent Set Based on Multilevel Fuzzy Mode
-
基于粗糙集的频繁项集挖掘算法
Mining Algorithm of Frequent Item set Based on Rough Set
-
FSC&利用频繁项集挖掘估算视图大小
FSC & Using Frequent Set Mining for View Size Estimation
-
基于多层概要结构的数据流的频繁项集发现算法
Finding Frequent Items of Data Streams Based on Hierarchical Sketch