约化密度矩阵

  • 网络Reduced density matrix;reduced density matrices
约化密度矩阵约化密度矩阵
  1. 约化密度矩阵和蛋白质研究中的原子对势能

    Reduced density matrices and pair potentials in protein folding and binding

  2. 两种约化密度矩阵重构方法的理论分析

    Theoretical Analysis of Two Reconstruction Schemes of Reduced Density Matrices

  3. 约化密度矩阵中的N表示问题

    N - representability Problem in the Reduced Density Matrix

  4. 本文讨论q阶约化密度矩阵和相应的自然轨道的一般性质。

    The general natures of the arbitrary order reduced density matrix and the relevant natural orbital have been researched .

  5. J-C模型非微扰约化密度矩阵主方程

    Non-perturbation Master Equation for the Reduced Density Matrix of the J-C Model

  6. 对具2n个电子的多原子体系,其一阶约化密度矩阵可用n个基求解HFR方程的方式构出。

    The first order reduced density matrix ρ _1 for a polyatomic system having 2n electrons can be constructed resolving HFR Eq. from n basis .

  7. 利用Harris模型,详细分析了Mazziotti提出的重构方法和Chen提出的一种由低阶约化密度矩阵重构高阶约化密度矩阵的系统方法(ScienceinChinaB,2006,49:402)的差异。

    The effectiveness of the approach for systematical reconstruction of higher order reduced density matrices with lower order ones , which was developed by Chen ( Science in China B , 2006 , 49 : 402 ), was compared theoretically with that of Mazziotti ′ s method through Harris model .

  8. 在Milburn内禀退相干模型下,研究了单模量子辐射场Fock态作用下两个二能级原子的纠缠,得到了原子约化密度矩阵的解析形式。

    In the consideration of Milburn model of intrinsic decoherence , we investigate the entanglement between two two-level atoms interacting with a Fock state of single-mode quantized radiation field . The reduced density matrix of the atom system is given explicitly .

  9. 约化密度矩阵与自然轨道的一般性质

    The General Natures of the Reduced Density Matrix and the Natural Obital

  10. 我们模型化了此微观体系并且推导了该体系的电子约化密度矩阵的率方程。

    We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD .

  11. 二是在一些特殊的表象中求解系统的约化密度矩阵方程。

    However , this second approach is limited to some specific representations as it solves the equation of the reduced density matrix .

  12. 当点间隧穿耦合强度较强时,随着其强度的增强,量子相干效应对电子全计数统计的影响逐渐减弱,即约化密度矩阵的对角元将起主要作用,此时没有观察到超泊松噪声。

    With the tunneling coupling strength between the dots being strong , the impact of quantum coherence effect on electronic full-counting statistics becomes weak gradually .

  13. 我们将为系统设置多种电子关联作用的环境,为了得到这些设定下的系统输运特征,我们将使用双量子点系统约化密度矩阵算符通过一般化的主方程方法以得到结果。

    To obtain the transport characteristics in different regimes as we set , we use the generalized master equation method for the reduced density operator of the double quantum dot .

  14. 然后给出本文的重要结果之一:含有隧穿电子数的约化密度矩阵方程与推广的量子主方程,该方法特别适合于处理开放的量子系统。

    Then we derive one of the main results of the thesis & number-resolved density matrix and generalized quantum master equation . This is a well-suited method to treat open quantum systems .

  15. 该方法不是从第一原理出发,因为耗散环境应该被看成是自由度为无限维的谐振子或原子系统,对它的求解最好的方式是求解约化密度矩阵方程。

    This method is not from the first principle . A better approach is based on the reduced density matrix , which eliminate the infinite number of the freedoms of the dissipative environment .

  16. 其一,仅有阻尼相互作用和势能相互作用,此时利用位移算符的性质和相干态的性质很方便地推导了量子动力学模型的相干项(约化密度矩阵的非对角元);

    First , the interaction is damping interaction and potential energy . We deduce easily the coherent term of quantum dynamical model ( the off-diagonal of reduced density matrix ) by improving the nature of displace operator and the nature of coherent states .

  17. 在尽力澄清统计方法背后的物理化学模型的同时,强调了使用平均力势的优点,和应用二阶约化密度矩阵正确计算了平均力势的公式。

    While making the physicochemical models as clear as possible , the advantages of using the methods of " potential of mean force " are stressed and formulas for using these methods are given by making use of the second order reduced density matrices .

  18. 利用玻色-费米映射理论,通过计算我们发现,体系的约化单粒子密度矩阵,自然轨道和动量分布与δ势垒的强度和粒子总数有关。

    Through the Bose-Fermi mapping and numerical calculation , we find that the reduced single-particle density , momentum distribution and natural orbital of the system are related to the 8 barrier strength and the total particle number .