磁轴承

  • 网络magnetic bearings;AMB;PMB;AMBS
磁轴承磁轴承
  1. 主动磁轴承的神经网络自适应PID控制

    Neural network adaptive PID control of active magnetic bearings

  2. 基于VB的离心机磁轴承试验仿真系统开发

    Test and Simulation System for Magnetic Bearings of Centrifugal Machine Based on Visual Basic

  3. 基于PID控制的主动磁轴承-飞轮转子系统运动稳定性研究

    Study on Dynamic Stability of Flywheel Rotor Supported by AMB Based on PID Controller

  4. 同时研究了磁轴承开关功率放大器的相关原理,开发新型的PWM功率放大器。

    At the same times , the PWM switching amplifier for the AMB was researched .

  5. 本文主要内容是以数字信号处理器(DSP)为核心设计主动磁轴承的数字控制系统。

    The main content of this paper is about the design of digital control system of AMB based on DSP .

  6. 利用MATLAB编程进行可视化模拟计算,得出永磁轴承承载能力与轴承间隙的关系曲线,为永磁磁浮轴承的设计及性能测试奠定了理论基础。

    The relationship between carrying capacity of permanent magnet magnetic bearing and bearing clearance is got with the visualization simulation of MATLAB .

  7. 常规PID控制器参数往往整定不良,性能欠佳,对磁轴承系统运行工况的适应性很差。

    The routine PID controller had a bad adaptability on the operation of magnetic bearing system due to its inefficient parameter coordination .

  8. 以设计好的轴向磁轴承为控制对象,用MATLAB对磁轴承系统进行了仿真研究;

    Taking the axial magnetic bearing designed as the controlled member , and the control system of magnetic bearing is simulated by MATLAB .

  9. SVPWM方法在磁轴承开关功放中的设计及应用

    Design and Implementation of SVPWM Switching Power Amplifiers for Active Magnetic Bearing

  10. 再次,以数字信号处理器(DSP)为核心建立了单自由度磁轴承数字控制系统,对数字控制系统主要电路进行了分析。

    Third , digital control system of one freedom MB based on DSP is built and main circuit of digital control is analyzed .

  11. 基于CMAC神经网络的主动磁轴承控制研究

    Research on active magnetic bearings control based on CMAC neural networks

  12. 采用了基于H∞控制系统的优化设计思想,在对轴向磁轴承H∞控制进行分析的基础上将H∞控制应用于磁轴承的控制器设计中。

    It adopted the optimization design idea based on H ∞ control . And the H ∞ control in the control design of magnetic bearing was applied .

  13. 试验表明:在不考虑运动、磁路耦合情况下,采用分散独立的PID控制方法,实现了磁轴承稳定工作,并且满足磁轴承性能控制要求。

    The results of experiments show that decentralized PID controllers meet demands of hybrid magnetic bearings when couplings of movement and magnetic circuit are neglected .

  14. 在对经典控制方法分析的基础上,优化控制算法,提出了气磁轴承的数字PID控制方法。

    At the basis of analysis of classical control methods , we optimize the control algorithm and deduce the digital PID control method of gas-magnetic bearing .

  15. 最后,以DSP硬件控制为基础,运用汇编语言编写了单自由度磁轴承系统的控制软件,对控制器的实现进行了评估。

    Finally , the control software of one freedom MB system is compiled using the DSP assembly language , and feasibility of the controller realization is appraised ;

  16. 因此,从刚度和阻尼的角度研究了基于独立式控制原则并采用PID校正方法的磁轴承&转子系统。

    From the point of the stiffness and damping , this paper studies on an AMBs rotor system which is based on decentralized control and using PID compensator .

  17. 针对主动磁轴承系统的本质不稳定性、非线性和参数不确定性,提出基于BP神经网络的自适应PID控制器。

    Aiming at the instability , non-linearity and parameter incertitude of the active magnetic bearing ( AMB ), this paper proposes an adaptive PID controller based on BP neural networks .

  18. HTR-10磁轴承转子动力学的初步研究

    Preliminary Study on Rotor Dynamics of Magnetic Bearing for 10MW High Temperature Gas-cooled Reactor

  19. 该原型机采用了径向永磁轴承和单端轴向电磁轴承相结合的磁悬浮轴承系统,基于霍尔传感器的转子轴向位移径向检测系统,以及模拟PID控制器和线性功率放大器。

    The prototype utilizes MB system combined with radial PMB and single axial AMB , rotor axial displacement detection system based on Hall sensors , analog PID controller and linear power amplifier .

  20. 永磁轴承安装在转子的顶部,提供一个正刚度小于1N/mm的悬浮力。

    Passive permanent magnetic bearing is put on the top of the rotor to give a stable levitation force in the axial direction .

  21. 编制了5自由度磁轴承的控制算法软件,AD中断软件以及DSP和PC机的通讯软件。

    Software including control algorithm for 5 degree-of-freedom , AD interrupting , communication with PC was worked out . Finally , the 5 degree of freedom control system with the PID + FUZZY algorithm .

  22. 10MW高温气冷堆磁轴承转子结构与固有频率的关系研究

    Study on the Relationship about Magnetic Bearings Rotor Structure and Natural Frequency for 10 MW High Temperature Gas-cooled Reactor

  23. 在本文中,分别采用了最优输出反馈控制和最优H∞输出反馈控制改善磁轴承的径向和轴向位移调节。

    In this research , two other control options for high speed machine were designed based on the optimal output feedback and the improved H ∞ output feedback control methods to improve the radical and axial position regulation of AMB .

  24. 另外与常规PID控制器、变参数PID控制器的仿真结果进行了分析比较,研究发现滑模变结构控制器以其独特的控制方法应用在磁轴承系统中具有良好的动态品质和强鲁棒性。

    The simulation results show that the control performance of the variable parameter PID controller is better than that of the conventional PID controllers , and sliding mode variable structure controller has high tracking precision and good robustness ;

  25. 此外,又进行了主动磁轴承的神经网络控制仿真,仿真结果表明:对于很复杂的非线性系统,神经网络控制优于传统的PID控制;

    In addition , simulation of neural network control has been carried out , and the results of simulation show that , for a complicated nonlinear system , neural network control has an advantage over additional PID control .

  26. 研究表明:以TMS320F240为核心的数字控制系统能够满足磁轴承控制系统的要求。

    The research shows that the digital control system based on TMS320F240 can meet the requirements of magnetic bearing system .

  27. 同时通过FMECA找出了影响永磁轴承可靠性的主要失效模式及失效因素,确定了对永磁轴承的重点专项可靠性研究方向。

    In addition , the main failure mode and failure cause are determined by FMECA , which are main objects for further research into magnetic bearing reliability .

  28. 讨论了以定点数字信号处理器TMS320F240为核心的数字控制系统硬件构成及软件设计,并对磁轴承控制系统进行了仿真和实验研究。

    The hardware of a digital control system based on a fixed-point digital signal processor TMS320F240 , as well as software , is discussed .

  29. 根据气磁轴承对控制器的要求,完成了基于TMS320F2812处理器的数字控制器的硬件设计和实现。

    According to gas-magnetic bearing 's requirement of the controller , we finish the design and implement of hardware of the digital controller of TMS320F2812 Processor .

  30. 并按照磁悬浮控制系统的非线性迟滞的特性,进一步设计了适合磁轴承系统的模糊PID控制器,并通过MATLAB推导出最终的模糊控制表。最后对所设计的系统用DSP进行了实现。

    MODELING OF A NONLINEAR SYSTEM WITH HYSTERESIS CHARACTERISTICS According to the character of bearing 's not linearity , we design Fuzzy-PID controller and deduce the fuzzy control 's table using MATLAB . At last , we realize the system by using the Digital Signal Processor chip ( TMS320F240 ) .