电压温度系数

  • 网络Voltage temperature coefficient;Voc;Temperature Coefficient of Voc;TK Voc
电压温度系数电压温度系数
  1. 根据计算结果,可以得到以下结论:高压LDMOS的阈值电压温度系数在相当宽的温区内是一常数;可用温度的线性表达式来计算阈值电压温度系数;

    Computing results show that a threshold voltage temperature coefficient of a high voltage power LDMOS is a constant at a wide temperature range , and a linear expression can be used to describe its temperature characteristics .

  2. 短沟道MOST阈值电压温度系数的分析

    Analysis of Threshold Voltage Temperature Coefficient for Short Channel MOSFETs

  3. 高压功率LDMOS阈值电压温度系数的分析

    An analysis of threshold voltage temperature coefficient for high voltage power LDMOS

  4. 推导了了一个短沟道MOST阈值电压温度系数表达式;

    We deduced a expressions for threshold voltage temperature coefficient of short channel MOST .

  5. 调整输出电压温度系数

    Temperature coefficient of regulated output

  6. 发现短沟道MOST阈值电压温度系数在高于室温的一个较宽的温区内近似不变,但在温度较高时迅速增大。

    And found that the coefficient is almost unchanged in a quite wide temperature range which is higher than the room temperature , but it increased sharply at high temperature .

  7. 阈值电压的温度系数可以用温度的线性表达式来计算,从而可以得出功率LDMOS阈值电压的温度系数最优化分析。

    The paper has analyzed temperature characteristics on high voltage power LDMOST s threshold voltage and given a calculation formula of its temperature coefficient from computing results .

  8. 主要利用电阻的温度系数与阈值电压VTH温度系数相同的特性实现温度补偿原理。

    It compensates for the temperature characteristics of the resistor and the threshold voltage VTH in such a way that the reference current has small temperature dependence .

  9. 同时,BGR电压的正温度系数抵消了β乘法器中负温度系数。

    The BGR voltage has a positive temperature coefficient to cancel the negative temperature coefficient of the β - multiplier .

  10. 论述了基本恒流管电平移位电路的电压、温度稳定系数和改进型恒流管电平移位电路的电压稳定系数,并指出了减小稳定系数的方法。

    The stability coefficient of voltage and temperature of the basic and improved level shifting circuit of constant - current regulator tube is introduced , and the way to decrease the stability coefficient is pointed out .

  11. 电压调整器的温度系数

    Temperature coefficient of voltage regulator

  12. 基准源电路采用三管能隙结构,电压、电流基准温度系数分别为18ppm/℃和36.2ppm/℃;

    The reference circuit adopts bandgap structure . The temperature coefficients of voltage reference and current reference circuits are 18ppm / ℃ and 36.2ppm / ℃ respectively .

  13. 为了简化可变参考电压电路结构,并且降低该参考电压的温度系数,讨论了一种输出可调节的CMOS带隙基准电路。

    To simplify the structure and lower the temperature coefficient of changeable voltage reference circuit , the design of a CMOS bandage reference ( BGR ) with adjustable output is discussed .

  14. 为了延长电力系统中铅酸蓄电池的使用寿命,必须对蓄电池进行充电保护及对过充阈值电压进行温度补偿,过充阈值电压温度补偿系数对单体电池而言在-3.5~-4.5mV/℃范围内较为合理。

    To prolong life of battery , protection and temperature compensation of end of charge voltage are necessary for systems .

  15. 介绍了该电路的各子模块电路,包括偏置电路、带隙基准电路和输出电压调节电路,详细分析了带隙基准电路所产生的基准电压的温度系数及其调节原理。

    Firstly the sub-blocks including bias circuit , bandgap reference , and voltage regulator circuit are introduced , and then the temperature coefficient adjustment of voltage generated by bandgap reference is analyzed .

  16. 基准电压源的设计采用的是带隙基准电压源的一阶温度补偿技术实现,设计得到输出电压的温度系数的仿真结果为14.6ppm/℃。

    The design of voltage reference in this thesis adapted band-gap first-order temperature compensation technique , and the simulation result of temperature coefficient ( TC for short ) of the output voltage is 14.6ppm / ℃ .

  17. 在基准电压产生电路的设计中,分析了一种带负反馈和启动电路的双极型两管能隙基准源电路,具有高基准电压值和低温度系数。

    In reference circuit design , a two-transistor bandgap reference with negative feedback and start-up circuit is introduced . This reference has high voltage and low temperature coefficient .

  18. 另外,在分析CMOS电压基准温度补偿原理的基础上,提出了一种分段曲率补偿的CMOS电压基准电路,补偿量适应温度的变化,大幅地降低了基准电压的温度系数。

    In addition , based on the analysis of the principle of temperature compensation , a CMOS voltage reference with piecewise curvature compensation is proposed . The amount of compensation adapting to the changes of temperature significantly reduces the temperature coefficient of voltage reference . 2 .