水下机器人

  • 网络auv;Underwater Robot;Rov;uuv
水下机器人水下机器人
  1. 水下机器人主动升沉补偿实验表明液压系统的非线性降低了液压绞车主动升沉补偿前馈控制的升沉补偿效率。

    Active heave compensation tests of ROV indicate that non-linearity of hydraulic winch decreases the efficiency of active heave compensation .

  2. 用于水下机器人的主动侧扫声呐图像预处理技术

    Pre-processing Techniques for the Side Scan Sonar Images Used in ROV

  3. 基于PCA的水下机器人故障诊断与数据重构

    Fault diagnosis and data restoration based on PCA for underwater vehicle

  4. 近几十年来,智能水下机器人(Autonomousunderwatervehicle/AUV)技术取得了长足的发展。

    The technology of autonomous underwater vehicle ( AUV ) has achieved an impressive de-velopment during the last decades .

  5. AUV(Autonomousunderwatervehicle)代表了未来水下机器人技术的发展方向,是当前世界各国研究工作的热点。

    Autonomous Underwater Vehicle which represents the research direction of underwater robots in the future is a research hotspot around the world .

  6. 智能水下机器人(AUV)自救模糊专家系统仿真研究

    Simulation Research of Fuzzy-Expert System for AUV Self-Rescue

  7. 智能水下机器人(Autonomousunderwatervehicle,简称AUV)的可靠性是衡量AUV系统的重要技术指标之一。

    The reliability of Autonomous Underwater Vehicle ( AUV ) is one of the important technical specification in measuring the AUV system .

  8. 自主水下机器人(AUV)设计是一项复杂的系统工程,涉及多个学科领域。

    The design of Autonomous Underwater Vehicle is a complicated project , which involves many disciplines .

  9. 随着对自治式水下机器人(Autonomousunderwatervehicle)的研究不断深入,人们开始探究机器人有效的回收方法,深水回收有诸多优点而引起广泛关注。

    With the development of research on Autonomous Underwater Vehicle ( AUV ), people try to find out the effective method of recovery and deepwater recovery is focused on because of many advantages .

  10. 研究了鲁棒H∞控制在自治水下机器人(AUV)深度控制中的应用。根据刚体空间运动和流体力学理论建立了AUV垂直面运动的数学模型。

    A motion control strategy for an autonomous underwater vehicle ( AUV ) depth control in vertical plane based on a robust H ∞ controller was proposed .

  11. 其中自主式水下机器人(AUV)作为未来海洋探测开发的平台,有极其广阔的开发前景。

    Thus the Autonomous Underwater Vehicle ( AUV ), which serves as a platform for marine exploration , will become a hot research field .

  12. 自主式水下机器人(AUV)的研究是我国海上国防与海洋开发战略的重要组成部分。

    The research of the autonomous underwater vehicle is one of the most important parts of the naval national defence and ocean development stratagem .

  13. 针对水下机器人控制系统小型化和低功耗的要求,通过电路理论分析和Pspice仿真,改进设计出一种新型PWM桥式结构的功率放大电路。

    To satisfy the miniaturization and low power in the AUV servosystem , through circuit analysis and emulation by PSpice , a new PWM power-amplifier circuit of bridge structure is designed .

  14. 自主式水下机器人(AUV)在海洋探测、资源开发中得到了广泛的应用,是当今机器人研究领域的热点之一。

    Autonomous underwater vehicle ( AUV ), which is widely used in marine exploration and resource development , is a focus in the robotic research field today .

  15. 针对未知环境下自治式水下机器人(AUV)的运动规划问题,提出了一种基于行为的避障和趋向目标方法。

    Aimed at the problems of motion planning for autonomous underwater vehicle ( AUV ) in unknown environment , a behavior-based approach of obstacle avoidance and goal approaching is raised .

  16. 随着自主式水下机器人(AUV,Autonomousunderwatervehicle)在海洋科学考察和军事领域得到越来越广泛的应用。其运动控制算法及运动控制系统越来越受到人们的重视。

    With the fact that Autonomous Underwater Vehicle ( AUV ) are more and more widely used in the field of marine scientific research and military , its motion control algorithm and motion control system have been paid significant attention to .

  17. 自主式水下机器人(AUV)作为重要的水下探测设备,对它的研究不仅有重要的经济意义,在军事领域也有迫切需要。

    Autonomous Underwater Vehicle ( AUV ) is a kind of important underwater equipment . Its research has a profound economic meaning and is imminently needed because of military and politics reasons .

  18. 在先探测后识别方法中,提出了以水下机器人运动方向与海流方向夹角为主要参数的当量行程的概念,并以此为依据设计了基于TSP最短路径问题的水下机器人的全局行走策略。

    In the later method , suggests the concept of weighted journey based on the angle between AUV and ocean current , uses optimal result of TSP to solve the problem of global path planning .

  19. 以地形勘查使命为背景,对AUV(自治式水下机器人)规划层使命与任务协调方法进行了研究。

    Basing on the terrain scanning mission , this paper focuses on the problem of mission and task coordination method at the planning layer of AUV ( Autonomous Underwater Vehicle ) control system .

  20. 根据系统的功能要求,在Windows环境下利用Visualc++6.0编写了水下机器人手爪信息感知系统测试软件,以实现水下环境目标识别定位要求。

    According to function of system require , testing software of hand claw information perceiving system of the underwater robot is written by utilizing Visual C + + 6.0 under the environment of Windows , in order to realizing the discern orientating demand of environmental goal under water .

  21. 根据水下机器人系统的复杂性,利用Petri网分别为其结构层和性能层建立了模型,并在模型上进行了基于可达树的系统性能分析。

    Secondly , according to the complexity of Underwater Vehicle System , Petri nets is used to model for the structure layer and the function layer . Moreover , the system function analysis based on reachable tree is in progress in the model .

  22. 针对自治水下机器人(AUVs)开发和研究中的瓶颈问题,该文开展了AUV实时仿真系统的研究工作。

    This paper studied the Real-time Simulation System of Autonomous Underwater Vehicle ( AUV ) in order to solving the bottleneck problem about the development and study of Autonomous Underwater Vehicle .

  23. 基于VxWorks的水下机器人声通信系统软件设计空中对水下平台激光声通信技术的探讨

    Development of Acoustic Communication System on Underwater Robot under VxWorks ; An Opto-Acoustic Method for Communication between Aerial and Underwater Platforms

  24. 在诸如较大规模的区域海洋学采样、侦察,多异构平台协作作业、高可靠性智能水下机器人(AUV)系统等领域,多水下机器人系统具有单机器人系统不可比拟的优势。

    In the large scale underwater applications such as oceanographic sampling and renaissance , heterogeneous cooperation and highly reliable Autonomous Underwater Vehicle ( AUV ) system , the multiple AUV system have more advantages than single AUV .

  25. 自治式水下机器人(AUV)系统具有非线性、强耦合性和数学模型不确定性的特点,工作时存在未知外扰的影响,这对AUV运动控制系统的设计提出了更高的要求。

    Autonomous Underwater Vehicle is a system with nonlinear , strong coupled , time-variable and uncertain model exposed to unknown external disturbances . For these reasons , higher requirement is put forward about design of AUV motion controller .

  26. 之后针对自主式水下机器人(AUV)在大范围静态环境完全未知或部分未知的情况,本文提出一种应用动态划分全局工作环境、以多次局部优化代替一次性全局优化的路径规划方法。

    Then according to a large scale static unknown or partially unknown environment , this paper proposes a new path planning method which dynamically divides the global environment and uses multiple local optimizations instead of one-time global optimization .

  27. 以水下机器人的动态行为仿真为背景,针对单一环境下仿真水下机器人动态行为和流体动力学问题存在的局限性,提出了基于MATLAB/Simulink与FLUENT协同仿真的解决方案。

    Aiming at the dynamic behaviors simulation of underwater vehicle , a collaborative simulation scheme was proposed based on MATLAB / Simulink and FLUENT to overcome the limitation due to using single simulation platform to simulating the dynamic behaviors and hydrodynamics of underwater vehicle .

  28. 有缆水下机器人(ROV)广泛应用于海洋救助与打捞、海洋石油开采、水下工程施工、军事和国防建设等诸多方面,具有广阔的应用前景。

    ROVs possessing wide application prospect ( Remotely Operated Vehicles ) are widely used in many fields such as ocean salvage , ocean petroleum exploitation , underwater project construction and military industry .

  29. 以水下机器人动态系统建模问题为背景,提出了基于MATLAB/Simulink与FLUENT协同仿真机制与动态神经网络的水下机器人动态系统协同建模方法。

    Aiming at the dynamic system modeling of underwater vehicle , a new collaborative modeling method was proposed to model the dynamic system of underwater vehicle , which is based on the dynamic neural networks and the Collaborative Simulation mechanism between MATLAB / Simulink and FLUENT .

  30. 本文的研究内容是基于前视声纳信息的自主水下机器人(AUV)局部规划技术,重点研究了基于遗传算法的AUV动目标规避。

    The research content of this paper is planning technology of collision avoidance for Autonomous Underwater Vehicle ( AUV ) based on information of a forward looking sonar . The main technology of the research is collision avoidance to moving objects based on genetic arithmetic .