曼哈顿距离

  • 网络Manhattan Distance;City Block Distance
曼哈顿距离曼哈顿距离
  1. 而解决水平面上度约束下的曼哈顿距离Steiner树的重点在于确定辅助点数目和位置与度约束的处理两方面。

    And the emphasis of solving Manhattan distance Steiner minimum spanning tree under horizontal plane degree constraint is on two aspects , to determine the number and location of auxiliary point and degrees of processing .

  2. 对灰度直方图和彩色直方图,分别比较曼哈顿距离和欧氏距离在检索时的表现,以便得到最优的检索性能。

    For gray histogram and color histogram , the retrieval performances of Manhattan distance and Euclidean distance are compared respectively .

  3. 利用帧内宏块间的时空相关性以及使用一种基于曼哈顿距离和改进的二维滑动窗口机制的率点选择策略;

    According to the spatial-temporal correlation between macroblocks in a frame , a Manhattan distance metric and improved2D sliding window mechanism is used for rate point selection .

  4. 通过矢量,开发人员可以使用各种指标(比如说曼哈顿距离、欧氏距离或余弦相似性)来计算两个项目之间的距离。

    Given the vectors , one can calculate the distance between two items using measures such as the Manhattan Distance , Euclidean distance , or cosine similarity .

  5. 应用基于欧氏距离、曼哈顿距离及模糊相似优先的范例推理方法对边坡稳定性进行评价。并对三种方法作以比较。

    The stability of structured rock slopes is evaluated by Case-based reasoning method based on Euclidean distance , Manhattan distance , Fuzzy analog optimum and the results are compared each other .

  6. 为了保证路径规划算法的高效性,将经典A~算法进行改进,引入地理经纬度坐标,并计算两点间曼哈顿距离作为启发因子,提高了A~算法的工作效率。

    To ensure the high efficiency of path planning algorithm , the improvement of the classic A algorithm is made into practice by introducing geographical latitude and longitude coordinate and beginning with calculation of manhattan distance between the two points .

  7. 传统的方法受瓶颈限制,计算量很大,而且传统算法一般只能解决两个设备之间的最短曼哈顿距离,须要引进一种智能算法来优化改进系统性能。

    The traditional methods by bottleneck limit , have the large quantity of calculation , and the traditional algorithm can only solve the shortest Manhattan distance between two equipment , need to introduce a kind of intelligent algorithm to optimize and improve the system performance .