拉格朗日方程

  • 网络Lagrange’s equation;Lagrange equation;Euler-Lagrange equation
拉格朗日方程拉格朗日方程
  1. 然后,应用分析力学中的第二类拉格朗日方程(Lagrange),建立抓斗驱动系统的动态数学模型。

    Then , this thesis establish kinetic and dynamic model of grab bucket driving system by through Second Lagrange equations in analytic mechanics .

  2. 在运动学分析的基础上,采用拉格朗日方程分析方法,对整流罩模拟假弹头进行动力学分析,对于运用龙格-库塔法求解所得出的微分方程,编制专用的MATLAB程序实现这一求解过程。

    Based on the kinematical analysis , it applies the Lagrange equations to the dynamic analysis of fairing simulating fake warhead . The appropriative MATLAB programs which implement the solving process are made for the differential equations which the Runge-Kutta method is applied for solving it .

  3. 本文利用拉格朗日方程建立了三维n轴液力空气悬挂车辆的振动微分方程。

    In this paper , a differential equation of vibration is formulated by using Lagrange 's equation for vehicles with 3-dimensional , n-axle , hydropneumatic suspension .

  4. 非线性LC网络中的位函数与拉格朗日方程

    Potential functions in non-linear LC networks and lagrange equations Lagrange Equations for Coordinate Frame at Center of Mass

  5. 用拉格朗日方程研究RLC电路的暂态过程

    Study on the transient state processes of RLC circuits by using Lagrange ′ s equations

  6. 首先利用拉格朗日方程建立了该卫星的动力学方程,描述了系统存在的非结构不确定性,然后设计了H∞回路成形控制器。

    Firstly , the dynamic model of the satellite is established using the Lagrange equation , and the unstructured model 's uncertainty is described , then the H_ ∞ loop-shaping controller is designed .

  7. 运用拉格朗日方程,建立了磁悬浮动量轮系统径向平动的精确动力学模型,并以应用广泛的PD控制进行了运动分析。

    The precise dynamic model of magnetic suspension momentum wheel 's translation is proposed using La-grange 's equations and the motion is analyzed with the widely used PD control method .

  8. 从理论上证明了新能量泛函的Gamma收敛性,推导了最优化能量泛函所满足的欧拉-拉格朗日方程。

    The authors give a detailed proof of Gamma convergence result of the generalization energy functional , and Euler-Lagrange equation for optimizing the new energy functional is also proved .

  9. 应用拉格朗日方程对非线性RLC串联电路的暂态过程进行了求解,对所得到的解析解进行了分析,得到了非线性RLC电路的一些普遍特征。

    By using Lagrange formulations , the solution of transient in nonlinear serial RLC circuits was obtained and analyzed to find their some general features .

  10. 利用拉格朗日方程建立IAD水平运动的数学模型,提出了两种负载防摆与跟踪控制策略。

    By using Lagrange method , mathematical model of horizontal movement is built , and two kind of the load anti-swing control strategy are set forth .

  11. 本文从变质量力学系统的Kane方程,推出了变质量一阶非线性非完整系统的拉格朗日方程。

    First order nonlinear non - holonomic mechanical systems having variable mass was deduced from the T. R. Kane 's equation for the mechanical systems having variable mass .

  12. 采用RPY角描述方法,基于拉格朗日方程建立了Stewart平台6-DOF并联机器人完整动力学模型。

    In this paper , the RPY description method is adopted to develop the wholly dynamic model of the 6-DOF Stewart platform robot which is based on the Lagrange equation .

  13. Kane方程,由此导出变质量完整系统和非完整系统的拉格朗日方程。

    Kane ′ s equation for the mechanical systems having variable mass was developed , from which the Lagrange ′ s equations for the holonomic and non-holonomic mechanical systems having variable mass were deduced .

  14. 针对旋转小球在垂直平面内运动的欠驱动的具有旋转激励的平移振荡器(TORA),基于拉格朗日方程,建立其动力学模型。

    Based on Lagrange equations , the dynamics is derived for an underactuated translational oscillators with rotating actuator ( TORA ) that actuator motion occurs in a vertical plane .

  15. 根据拉格朗日方程建立考虑复合材料叶片旋转刚体运动的振动方程,采用Galerkin法建立了广义坐标表示的弯扭耦合叶片的低阶固有振动分析模型。

    The vibration equation of the composite rotating blade is formulated according to the Lagrange equation . The lower-order natural vibration analysis model is also established , which couples the bending and torsion , in the generalized coordinates is also derived by the method of Galerkin .

  16. 然后,建立了爬壁机器人的运动学和动力学模型,在Sheth-Uicker规则下,建立运动学方程,利用拉格朗日方程建立动力学模型。

    All these are the basis for robot ' motion analysis . Then , kinematics and dynamics model of the climbing robot is built . Under Sheth-Uicker rule , the kinematics equation is set up .

  17. 采用Dubowsky冲击副模型,利用扰动坐标法和拉格朗日方程对同时含有两个间隙的曲柄滑块机构进行动力学建模,得到了相应的运动微分方程组。

    Based on perturbation coordinate approach and Lagrange equation , adopting Dubowsky impact pair model , the planar slider-crank mechanism with two clearances simultaneously in pairs is modeled . Thus , responding differential equations are gotten .

  18. 质心系中的基本形式的拉格朗日方程及其应用

    The Lagrange equation and its application in center-of-mass frame of reference

  19. 用拉格朗日方程求解中心力问题

    To Solve the Central Force Problem with the Equations of Lagrange

  20. 导出拉格朗日方程的一种新方法

    A new method of derivation for the lag - range 's equation

  21. 关于由拉格朗日方程得到能量积分的条件

    On the Condition of Obtaining Energy Integral from Lagrange Equations

  22. 非惯性系拉格朗日方程的能量积分

    The energy integral of Lagrange equation in non-inertial coordinate system

  23. 拉格朗日方程平面展开式在机构动力学中的应用

    The Application of Plane Unfolding Formula of Lagrange Equation in Mechanism Dynamics

  24. 动能定理与第二类拉格朗日方程的推导方法

    Theorem of kinetic energy and deduction method of the second Lagrange equation

  25. 第二类拉格朗日方程建模在自动武器上的应用

    Application of the second Lagrange equation modeling in automatic weapon

  26. 用拉格朗日方程求解椭圆摆的周期

    Using Lagrange Equation to Solve the Period of Elliptical Pendulum

  27. 电路中的拉格朗日方程及其应用

    Lagrange ′ s equations in circuit and the application

  28. 这个新的分析方法比常用的拉格朗日方程更加有用。

    This novel method seem to be more useful than conventional Lagrange equations .

  29. 两类拉格朗日方程的比较

    The comparison of two kinds of Lagrange 's equations

  30. 欧拉-拉格朗日方程的形式讨论

    On the forms of the Euler - Lagrange equations