定量预测
- Quantitative prediction;quantitative forecasting
-
非传统矿产资源定量预测的理论思考
Theoretical Consideration to Quantitative Forecasting of Nontraditional Mineral Resources
-
基于定量预测技术的预测支持系统
Forecasting Support System Based on Quantitative Forecasting Technology
-
关于辽宁地区b值方法定量预测的研究
Study on quantitative forecast using of b-value method in Liaoning region
-
而基于GIS的三维地下矿体形态模拟是进行矿产资源定位、定量预测的关键。
This GIS-based 3D ore-deposit model is the key to the mineral resource quantitative predication .
-
基于BP网络模型,对地下水水位变化规律进行了定量预测。
Groundwater level variation has been quantitatively predicted based on the BP neural network model .
-
引入人工神经网络BP模型对流域产沙进行了定量预测。
This paper gives an approach on quantitatively forecasting catchment sediment yield with neural network BP model .
-
文章将Logistic回归模型与前期有效降雨量结合,形成一套对降雨诱发型滑坡进行定量预测预报的方法。
In this paper , a quantitative method based on Logistic regression and effective antecedent rainfall is proposed .
-
灰色GM(1,1)模型在紫金山金矿定量预测中的应用分析
Application of Grey Model GM ( 1,1 ) to quantitative prognosis of Zijinshan Gold Mine , Fujian Province
-
目的:定量预测SD大鼠和ICR小鼠的年度及月份销售量,制定出动物的繁殖计划。
To determine the reproductive plan in SD rats and ICR mice .
-
TiAl合金精密铸件缩孔的定量预测
Quantitative Simulation of Shrinkage Cavity of TiAl Precision Casting
-
比较了偏最小二乘(PLS)法在两种情况的定量预测能力。
The quantitative prediction abilities of Partial Least Squares method in both cases are compared .
-
本文在单个金融数据定量预测模型(改进的灰色GM(1,1)模型和ARCH族模型)的基础上,提出了基于改进遗传算法的非线性组合预测方法。
Based on genetic algorithm , this paper proposes a nonlinear combination forecast model consisted of improved GM ( 1,1 ) and ARCH models .
-
本文利用Markov链建立模型,对组织各类人员的供给作出定量预测,为组织的人事部门或人力资源管理部门根据职位人员需求安排合适的人选提供决策的依据。
With Markov Chain , this paper sets up a forecast model to forecast quantitatively the supplies of different kinds of personnel in an organization .
-
在此基础上,采用了定量预测即:弹性系数预测法及神经网络分析法即BP神经网络法对福建省煤炭需求进行预测。
Based on that , by using quantitative prediction methods , which include elasticity coefficient prediction method and neural network analysis , this paper forecasted the total coal demand .
-
利用蒙特卡罗模拟和计算机Matlab编程的定量预测,对项目的投资决策风险和融资风险进行评价,使项目融资风险评估系统化。
Using Monte Carlo and Matlab , make mensurable forecast , evaluate the risk of invest & financing decision-making , and make the evaluation of project financing risk systematization .
-
GIS支持的Eigenface法&适于只有一个模型单元时的矿产定量预测方法
A mineral resource prediction method using in areas with only one model cell : GIS-supported eigenfaces
-
结合对未来几年南京居民收入差距趋势的定性分析,利用GM(1,1)灰色预测模型对南京居民收入差距的发展趋势进行了定量预测。
This article forecast the tendency of Nanjing residents ' income gap in the following years using GM ( 1,1 ) model integrating the qualitative analyses .
-
CYP介导的抑制性药物相互作用的体外定量预测
In vitro prediction of CYP-mediated inhibitory drug and drug interaction
-
基于CYT资料的储层岩石特性参数定量预测
Quantitative Prediction of Characteristic Parameters of Reservoir Rock Based on Detection Data of Direct Detecter of Space Source
-
因此,亟待探索一种在给定车型相关参数、车速及路况等信息的条件下,能定量预测其NVH特性的有效方法。
Therefore , it is necessary to find out an effective technique to predict the NVH performance of vehicle in a given condition .
-
最后,利用灰色系统理论中GM(1,1)模型对钢筋混凝土构件碳化寿命进行定量预测。
Lastly , GM ( 1,1 ) model was taken to predict the carbonation life of reinforced concrete members and GM ( 1 , N ) model for analyzing holistically and dynamically reinforced concrete members in common atmosphere environment .
-
以物流业发展定量预测常用的灰色预测GM(1,1)模型为例,介绍了现代物流业发展定量预测通用软件系统的内容、结构、设计、功能以及该设计与实现的关键技术。
Grey model used by logistics development quantitative forecast is presented as an example . The content , structure , design , function and key technology of design and implementation of system are introduced , which is modern logistics development planning forecast .
-
3S技术结合景观生态学方法将生态环境影响评价由定性评价转向定量预测,为建设项目生态影响评价研究作了有益的探索。
The combination of the 3S technique and the landscape theoretical ecology could turn the qualitative assessment into quantitative prediction for assessing the eco-environmental impact . This is very helpful for the ecological impact assessment of construction projects .
-
随着管理信息系统(MIS)应用水平的提高,决策人员和研究人员掌握了大量数据,并希望利用数学模型来分析这些数据,挖掘有用信息,从而进行定量预测。
With improving of the ability about application of IMS ( information managing system ), the researchers and decision-makers hold large numbers of data , and expect using math model to analysis those data and mining useful information for the sake of quantificational forecast .
-
通过野外试验,作者认为:~(218)Po法不仅可以寻找隐伏铀矿体,而且能够定量预测盲矿体的埋藏深度与规模。
Through field testing , the author considers that tge ~ ( 218 ) Po method can 't only be used in finding buried uranium ore bodies but also can quantitatively predict the dimension and depth of buried . ore bodies .
-
讨论了波长范围的选择和主成分数对PLS定量预测蛇床子萃取物中蛇床子素和欧前胡素含量能力的影响,并对预测集样品含量进行预测,结果令人满意。
The effects of the region selection of wavelength and the numbers of principal components on the prediction ability of PLS were discussed and the concentrations of the samples of the prediction set were predicted , the predicted results were reliable .
-
本文提出利用灰色系统理论进行煤自然发火试验中煤体温度定量预测的新方法,根据煤自燃基本规律,建立灰色预测GM(1,1)模型并进行预测。
In this article , a new method is put forward to forecast quantificationally the coal temperature in the coal autonomic combustion examination with gray sys - tem theory , according to basic rule of coal autonomic combustion , gray forecast model GM ( 1,1 ) is founded .
-
在此基础上对信息家电的市场需求趋势进行定性分析,并运用Logit组合市场预测模型进行定量预测;
Base upon this , to forecast the develop trend on market demand of IA , not only with qualitative way , but also with a quantitative way , namely the Logit Combing Forecast Model on market development trend .
-
利用连续植被辐射传输模型(SAIL模型)模拟生成小麦冠层反射率数据,比较了数据挖掘中的新方法模型树、支持向量回归与传统的逐步回归用于高光谱数据定量预测的效果。
The prediction performances of model tree ( MT ), support vector regression ( SVR ) and stepwise regression ( SR ) were compared using the wheat canopy hyperspectral reflectance data which were simulated by a radiative transfer model of SAIL ( scattering by arbitrarily inclined leaves ) .
-
本文研究内容包括以下四个方面:1.利用近红外光谱(NIR)技术结合反向传递神经网络法(BPNN)定量预测了杉木中的综纤维素、木质素、密度和微纤丝角。
The results as follows : 1 . The amount of holocellulose , lignin , density , and microfibril angle of Chinese fir were predicted by using back-propagation neural network ( BP-ANN ) combined with near infrared ( NIR ) spectrometry .