三角矩阵

  • 网络triangular matrix;Triangular Matrices
三角矩阵三角矩阵
  1. Fuzzy三角矩阵的幂收敛性

    Convergence of power of a fuzzy triangular matrix

  2. n级三角矩阵环上的模范畴和同调特征

    The Category of Modules over a Triangular Matrix Ring of Order n and Its Homological Characterizations

  3. 第三章主要考虑交换半环上n阶三角矩阵代数的自同构。

    In chapter 3 , we will consider the automorphisms of triangular matrix algebras over commutative semirings .

  4. 上三角矩阵环满足ZCn(ZIn)的子环

    Subrings satisfying ZC_n ( ZI_n ) of upper triangular matrix ring

  5. Zn[ω]与形式三角矩阵环的零因子图

    The Zero Divisor Graphs of Z_n [ ω ] and Formal Triangular Matrix Rings

  6. 三角矩阵求逆的ASIC实现研究

    Study on Inverse Matrix Calculation and its Implemention in ASIC

  7. 环R是弱对称环当且仅当R上的n×n上三角矩阵环Tn(R)是弱对称环;

    A ring R is weakly symmetric if and only if for any n , the n × n upper triangular matrix ring ( T_n ( R )) is weakly symmetric ;

  8. 研究了reduced环R上的m×m阶上三角矩阵环Tm(R)的满足ZCn(ZIn)的子环。

    The subrings satisfying ZC_n ( ZI_n ) of the m × m upper triangular matrix ring T_m ( R ) over a reduced ring R are studied .

  9. 设N(n+1)(R)是2-挠自由交换环上的n+1阶严格上三角矩阵代数。

    Over a 2-torsionfree commutative ring R with identity , the algebra of all strictly upper triangular n + 1 by n + 1 matrices is denoted by N_ ( n + 1 )( R ) .

  10. 对角矩阵及三角矩阵之特征值,相似矩阵,由QR分解计算特征值,主特征值之迭代估算。

    Eigenvalues of diagonal and triangular matrices , similarity transforms , calculation of eigenvalues from QR decomposition , iteratively estimating the leading eigenvalue .

  11. 三级三角矩阵环的morphic性

    On Morphic Property of 3 × 3 Triangular Matrix Ring

  12. 应用初等的组合方法和三角矩阵知识,给出了两n阶实对称循环Toeplitz矩阵相乘的一种快速算法。

    In this paper , by applying elementary combination methods and some properties of trigonometric matrix , a fast algorithm of multiplication for two n-order real symmetry-circulant Toeplitz matrices is investigated .

  13. 上三角矩阵Artin代数上Gorenstein投射模的构造

    The Construction of Gorenstein Projective Modules over Upper Triangular Matrix Artin Algebras

  14. 首先给出了Householder法的基本思想,主要用Householder变换逐步将系数矩阵约化为上三角矩阵。

    First , presents the basic ideas of Householder method , mainly uses Householder transform gradually into the coefficient matrix about triangular matrix .

  15. 设Γ是三级三角矩阵代数,modΓ表示Γ上的有限生成模范畴,Γζ是与modΓ等价的范畴。

    Let г be 3 order triangular matrix algebra , mod Γ be finitely generated module category over Γ and Γ ~ ζ equivalent category with Γ .

  16. 本文一改传统方法,从矩阵分解入手,逐步推导出一种新颖的判定方法,并给出将n阶实对称矩阵A分解为特殊三角矩阵与对角矩阵乘积的具体计算公式。

    By changing the traditional method and starting with the matrix decomposition , we have made out a new method of judgment step by step and a concrete computing formula of decomposing the n real symmetric matrix A into special triangle matrix and diagonal matrix .

  17. 针对离散系统,介绍了几种迭代学习控制的分析方法:最优迭代控制方法、基于下三角矩阵理论的迭代学习算法、基于2-D系统理论的学习控制方法等。

    For discrete system , introduces several methods of iterative learning control analysis of optimal control method , under the iterative learning algorithm , based on the theory of 2 - D system of learning methods of control . 3 .

  18. 文章给出了三级三角矩阵环Г的定义,通过建立一个等价函子F,证明了三角矩阵代数Г上的有限生成模范畴modГ与Г£是等价的范畴。

    This paper gives the definition of triangular matrix rings of order 3 Γ, and by establishing an equivalent functor F , proved here is also the equivalence between finitely generated module category mod Γ over triangular matrix algebra Γ of order 3 and category Γ £ .

  19. 该模式以BOD5总量为控制对象,任一河流断面的BOD5输入量在此响应矩阵中仅出现一次,从而使响应关系由下三角矩阵改变为每一行均含三个变量的稀疏矩阵。

    Based upon total load control , a BOD5 input to any river reach appears in the response matrix only once which changes the response from a lower triangular matrix to a sparse matrix in which any single row has three variables .

  20. 利用这个结果,将求解一个单切矩阵Nevanlinna-Pick插值问题转化求解某个截断的三角矩阵值矩量问题。

    On basis of this result , the solution of a single tangential matrix Nevanlinna-Pick interpolation problem is reduced to the solution of a certain truncated matrix trigonometric moment problem .

  21. 针对大型法方程和误差方程解算问题,提出为矩阵寻求一个好的排序,使得它的Cholesky分解后的下三角矩阵有较少的非零元素个数。

    Aiming at the difficulties of solving large-scale normal equation and error equation , it proposes a method on the basis of Cholesky decomposition principle . A good sequence for matrix is arranged , and the triangular matrices for Cholesky decomposition contain less non-zero elements .

  22. 在预测时域和控制时域相等与不相等两种情况下,将控制律求逆部分变换成Toeplitz形式,采用Trench-Zohar求逆算法和下三角矩阵求逆算法快速求取变换后的逆矩阵。

    Under two conditions that prediction horizon is equal and not equal to control horizon , inverse matrix in the control law is transfered for Toeplitz matrix , then the Trench-Zohar algorithm and the inversion algorithm of lower triangular matrix are applied to calculate the transformed inverse matrix .

  23. 随机三角矩阵条件数的数值实验及其分析

    Experiments and analysis for the condition numbers of random triangular matrices

  24. 特别地,三角矩阵常是十分易于驾驭的。

    Triangular matrices , in particular , are usually quite tractable .

  25. 第三章主要讨论分块上三角矩阵特征值的扰动,分块上三角矩阵是一类常见的矩阵,在实践中有着重要的意义。

    Block upper triangular matrix has an important significance in practice .

  26. 下三角矩阵神经网络逻辑电路的设计

    Design of logic circuits based on neural network with lower triangular matrix

  27. 交换整环上的上三角矩阵保对合的线性算子

    Linear operators preserving involutions of upper triangular matrices over commutative integral domains

  28. 形式三角矩阵环上的模的结构

    On the structure of modules over formal triangular matrix rings

  29. 域上保上三角矩阵逆的线性映射

    Linear maps preserving inverses of upper triangular matrices over fields

  30. 上三角矩阵空间上保持秩可加的线性映射

    Linear maps preserving rank-additivity on the space of triangular matrices