三点共线

三点共线三点共线
  1. 设P为平面中n个点的集合,其中无三点共线。

    Let P be a set of n points in the plane , no three collinear .

  2. 本文讨论平面上无三点共线的有限点集。设P为一个无三点共线的有限平面点集。

    In this paper we consider only finite planar point sets in which no three points are collinear .

  3. 在新参量S、H正方形核素图中,稳定区奇A核素的上界表现出优美的三点共线对称组。

    In the square chart of nucleus with new parameters S and H , upper limits of nucleus with odd A for stable region are shown graceful regularities of three points collinear symmetry .

  4. 由Desargues命题和Desargues逆命题证明了三点共线或三线共点的问题。

    By Desargues proposition and Desargues converse proposition , we can prove the problem of three point sharing one line and three line sharing one point ;

  5. Pappus定理和Pascal定理分别是退化和非退化二阶曲线中关于三点共线的重要定理,应用广泛。

    The Pappus theorem and Pascal theorem are the important theorems of three points colinearity of degenerate and non degenerate two stage curves respectively . Thye ′ re widely used .

  6. 让T是在同一平面上的2005个点的集合。这些点没有三点共线。

    Let T be a set of2005 coplanar points with no three collinear .

  7. 共线性是指物点、光心和像点三点共线。只要遵守针孔模型,就可以保证这点。

    Collinearity is ensured by pinhole model and it means that object point , optical center and image point are collinear and confines the counterparts on certain lines .