首页 / 词典 / good

wmr

  • 网络轮式移动机器人;马纳纳拉
wmrwmr
  1. The experiments show that the designed WMR control system meets the desired function requirements .

    实验结果表明,设计的轮式移动机器人控制系统满足设计功能要求。

  2. The vision localization and target tracking system of WMR is schemed and accomplished .

    同时,对目标特征的获取和跟踪方法作了研究,并设计开发了轮式移动机器人的视觉定位与目标跟踪系统,实现了对运动目标快速、稳定的跟踪。

  3. Study on approximate linearization and stabilization via state feedback for WMR math model

    移动机器人数学模型的近似线性化

  4. Realization of Wireless Control on Inertial Guided WMR

    基于惯性导引的轮式移动机器人的无线控制

  5. Approximate Linearization and Stabilization of Mathematical Model for WMR

    移动机器人数学模型近似线性化及反馈镇定

  6. The tracking error system of WMR is established using the given trajectory and then represented by a T-S fuzzy model .

    利用机器人运动特性和参考轨迹建立轨迹跟踪的误差系统并将其作T-S模型描述。

  7. The question to locate and track the moving target of WMR based on monocular image sequence is studied in detail .

    基于单目视觉成像原理,本文对轮式移动机器人的空间目标定位与跟踪问题进行了深入研究和仿真验证。

  8. Through defining a global reversible conversion , the kinetic model of WMR is transformed into a facilitate extended Heisenberg system form .

    定义了一个全局可逆变换,将移动机器人的动力学模型转换为一个利于分析的扩展Heisenberg系统形式。

  9. Constraints on the desired linear and angular velocities as well as the posture of the WMR are eliminated .

    消除了对期望的机器人线速度和角速度的约束还有位姿约束。

  10. In polar coordinate , two sliding surfaces are selected according to the position and direction and eliminate the posture constraint of the WMR .

    在极坐标系下,根据位置和方向选择两个滑动面,消除了机器人的位姿约束。

  11. The problems on trajectory tracking and posture stabilization of WMR with form of extend Heisenberg system that has drifting uncertainty factors is solved .

    解决了具有漂移不确定因素的以Heisenberg系统形式表现的移动机器人的轨迹跟踪和镇定问题。

  12. After analyzing the stability of controllers , their performance is proved by simulation . Then , the problems on robust stabilization and tracking of WMR are studied .

    做了稳定性的分析之后,通过仿真验证了控制方法的可执行性。其二,研究了轮式移动机器人的鲁棒镇定和跟踪问题。

  13. A first-state contractive model predictive control method is proposed aim at solving the problem on trajectory tracking and posture stabilization of nonholonomic WMR .

    本文提出了一个针对非完整轮式移动机器人轨迹跟踪和点镇定问题的初始状态收缩模型预测控制(FSC-MPC)算法。

  14. By the comparison with the two-wheeled differential drive structure on line or circular track 's simulation experiment result , illustrate the tricycle WMR 's superiority more and more .

    通过与两轮差动驱动结构走直线和圆轨迹的仿真实验结果的比较,进一步说明了三轮式结构的优越性。

  15. For the wheeled mobile robot ( WMR ) with actuator saturations and external disturbances , a tracking scheme via Takagi-Sugeno ( T-S ) fuzzy model is proposed .

    针对带有执行机构饱和约束与外部干扰的轮式移动机器人,提出了一种基于T-S模糊模型的轨迹跟踪方法。

  16. Simulation results indicate that FSC-MPC controller can obtain satisfactory system response . A global output-feedback controller is presented that solves both tracking and stabilization simultaneously for WMR at the torque level .

    仿真结果表明,FSC-MPC控制器能够得到令人满意的系统响应。设计了一种全局输出反馈控制器,在转矩层面解决了轮式移动机器人同时跟踪和镇定的问题。

  17. Automatic guided vehicle ( AGV ) is a kind of a wh ee led mobile robot ( WMR ), which is used to convey the material in modernizing self-service factory .

    自动导航小车(AGV)是一种移载用轮式移动机器人(WMR),主要用于现代化的无人生产车间中实现物料的搬运。

  18. This paper studies the problem of modeling on the kinematics for wheeled mobile robots ( WMR ), and analyses a differential steering kinematics model in the case of the ideal rolling in order to fulfil a steering angle control .

    研究了轮式移动机器人(WMR)的运动问题,分析了一种理想滚动情况下航向角控制的差动运动模型。

  19. Secondly , the platform utilizes the method of object-oriented to describe the Workshop Manufacturing Resources ( WMR ), and utilizes the concept of class to construct the class family of WMR ( FWMR ) and builds the model of workshop with the resources extracting from the class family .

    基于资源整合的车间模型框架研究该平台采用面向对象的思想对车间资源加以描述,利用类的概念构造出车间资源类库,从类库中提取资源集装成车间模型加以应用。