量子涨落

  • 网络fluctuations;quantum fluctuation
量子涨落量子涨落
  1. 电荷离散化时介观LC电路中电荷、电流以及能量的量子涨落

    The Quantum Fluctuation of the Charge , Current and Energy in the Mesoscopic LC Circuit with the Charge Discreteness

  2. 并讨论了电容耦合效应对介观LC电路中电荷和磁通量子涨落的影响。

    Thus we give an approach of mesoscopic LC circuit 's quantization and discuss the influence of capacitor 's coupling effects to the quantum fluctuation of mesoscopic LC circuit .

  3. 无耗散介观含源LC电路中电流和电压的量子涨落

    Quantum fluctuations of voltage and current in nondissipative mesoscopic active LC circuit

  4. 介观LC电路中电压、电流的量子涨落

    Quantum fluctuations of voltage and current in mesoscopic LC circuit

  5. 热克尔态下介观LC电路的量子涨落

    Quantum effects of the mesoscopic LC electric circuit in thermal Kerr state

  6. 介观LC电路量子涨落压缩真空态生成的条件

    Condition Generating Squeezed Vacuum States for Quantum Fluctuations in Mesoscopic LC Circuit

  7. 介观LC电路中电荷和电流量子涨落的一般关系式

    General Formulation for Quantum Fluctuation of Charge and Current in Mesoscopic LC Circuit

  8. 有限温度下介观LC电路中的量子涨落

    Quantum fluctuations of mesoscopic LC circuit at finite temperature

  9. RLC电路中电荷、电流的量子涨落

    Quantum fluctuations of charge and current in RLC circuit

  10. 介观含源RLC并联电路的量子涨落

    Quantum Fluctuations in Mesoscopic Parallel RLC Circuit with Source

  11. 介观RLC电路的量子化及量子涨落

    Quantization of Mesoscopic RLC Circuit and Quanta Fluctuate

  12. 用Wigner函数理论研究介观串并联RLC电路的量子涨落

    Study on Quantum Fluctuations of Mesoscopic Series-Parallel Connection RLC Circuit by Wigner Function Theory

  13. 关于介观有源RLC电路的量子化及其量子涨落

    On the Quantization of the RLC Electric Circuit with a Source and the Quantum Fluctuations

  14. 在真空态和热真空态下讨论了介观RLC电路的量子涨落。

    The quantum fluctuations of mesoscopic RLC circuit in vacuum state and in thermal vacuum state are considered .

  15. 电荷离散化时Fock态下耗散介观电路中的量子涨落

    The Quantum Fluctuations in the Dissipative Mesoscopic Circuit with the Charge Discreteness under Fock State

  16. 通过将热场动力学推广到含时体系,研究了有限温度下介观含时LC电路中的量子涨落。

    By extending the thermal field dynamics to the time dependent system , quantum fluctuations of the time dependent mesoscopic LC electric circuit at finite temperature were studied .

  17. 耗散电容支路的介观RLC并联电路中电流和电压的真空量子涨落

    The Quantum Fluctuations of the Voltage and Current of the Mesoscopic Parallel RLC Circuit with Dissipative Capacitance Branch Circuit in Vacuum State

  18. 在平移Fock态中,计算了磁通量和电荷的量子涨落

    Therefore , the quantum fluctuations of the magnetic flux and charge of the circuit are investigated in this displaced Fock State

  19. 再利用热场动力学理论方法研究了介观LC电路在有限温度时热克尔态下电荷和磁通的量子涨落,并对结果进行了讨论。

    We also used the thermal field dynamic theory to investigate the thermal Kerr state at a definite temperature and calculated the quantum fluctuation of both charge and magnetic flux , and discussed the results .

  20. 晶格量子涨落对spin-Peierls系统低能量激发态的影响

    Quantum lattice dynamical effects on the low-energy excitations in spin-Peierls systems

  21. 为提高信号的稳定性和保真度,对电路中的量子涨落进行了研究.利用热场动力学(TFD)方法计算了有限温度下介观电容耦合电路中的量子涨落。

    Using the thermal field dynamics , the quantum fluctuations in the capacitive coupled electric circuits at finite temperature are calculated .

  22. 最后对RLC电路中电荷、电流的量子涨落进行了研究,并对其结果进行了讨沦。

    For the application , quantum fluctuations of charge and the current in the mesoscopic circuit in the harmonic oscillator state are studied , result is analyzed and discussed .

  23. 从有源LC电路运动方程出发,通过量子化有源LC电路和计算电压、电流的量子涨落,研究了电源对量子涨落的影响。

    Starting from the equation of an active LC circuit , the influences of source on quantum fluctuation are investigated by quantizing an active LC circuit and calculating the quantum fluctuations of the voltage and the current .

  24. 从RLC并联电路的经典运动方程出发,研究了介观含源RLC并联电路在压缩Fock态中磁通量和电荷的量子涨落。

    Starting from the classical of motion for RLC parallel , we study the quantum fluctuations of the magnetic flux and charge of the circuit with external source in a squeezed Fock state .

  25. 量子涨落会强烈地影响反铁磁自旋阻挫系统的特性,使得它们的基态与经典的Neel态完全不同。

    Quantum fluctuation can greatly influence the properties of the frustrated spin systems and make the ground states different from the classical Neel state .

  26. 从经典电容耦合电路的运动方程出发,研究了在平移压缩Fock态下介观电容耦合电路中每个回路的电荷和电流的量子涨落。

    Starting from the classical equation of motion for a mesoscopic capacitance coupling circuits , the quantum fluctuations of charge and current of the circuits in a displaced squeezed Fock state are investigated .

  27. 基于电荷量子化的事实,运用最小平移算符的性质等,计算介观LC电路中电荷、电流以及能量的量子涨落,研究影响量子涨落的因素。

    On the basis of the charge quantization , the quantum fluctuations of the charge , current and energy in the mesoscopic LC circuit are calculated by the character of the minimum translational operator , the effects of the parameters on the quantum fluctuations are investigated .

  28. 从有源并联RLC电路运动方程出发,通过量子化的有源RLC电路计算了在压缩真空态的激发态下电荷和电流的量子涨落,并对结果进行了讨论。

    Starting from the equation for parallel connection circuit of RLC with source , the quantum fluctuations of the current and voltage in excitation state of squeezed vacuum state are evaluated by quantizing RLC circuit with source , and the results are discussed .

  29. 在广义动量表象中,通过幺正变换,系统的薛定谔方程转化为标准的马丢(Mathieu)方程的形式,在WKM近似下,计算了系统的能谱和电流的量子涨落。

    With a unitary transformation , the Schrodinger equation is transformed into the standard Mathieu equation in the generalized momentum presentation . The energy spectrum and the wave functions of the system are obtained .

  30. 将介观串并联RLC电路等效成阻尼谐振子并量子化,研究了压缩真空态的激发态、压缩真空态、真空态下电流和电压的量子涨落。

    Mesoscopic series-parallel connection RLC circuit is quantized by the method of damped harmonic oscillator operation . On this basic theory , quantum fluctuations of the current and voltage of each branch in excitation state of the squeezed vacuum state , squeezed vacuum state and vacuum state are studied .