数学生态学

  • 网络Mathematical ecology
数学生态学数学生态学
  1. 展望数学生态学与生态模型的未来

    Prospect of mathematical ecology and ecological modeling

  2. 数学生态学研究的主要内容包括两个问题:种群的数量变化和空间分布。

    The size and spatial distribution of populations are the two major subjects in mathematical ecology .

  3. 对于较复杂的Lotka-Volterra系统,给出上述性质的明确判定准则是数学生态学的一个重要课题,受到理论生态学家与数学家的广泛重视。

    It has been an important topic to give a definite criterion of these upper properties of a complicated Lotka-Volterra system , and many scholars have paid more attention to this field .

  4. 具分布偏差变元非自治数学生态学方程的全局渐近稳定性

    Global Asymptotic Stability of Nonautonomous Mathematical Ecological Equations with Distributed Deviating Arguments

  5. 多主体系统的一种数学生态学模型

    A Math Ecology Model of Multi-agent System

  6. 归纳了稳定性研究的野外生态学方法和数学生态学方法。

    This paper also introduced the research methods of field ecological stability and mathematical ecological stability .

  7. 数学生态学随机模型

    Random Models for Mathematical Ecology

  8. 生态系统的复杂性问题是数学生态学中的一个热门研究领域。

    The problem about the dynamic complexity of ecological system is an active research field of mathematical ecology .

  9. 空间生态学和性生态学都是当前理论生态学和数学生态学研究的重要领域。

    Both spatial ecology and sex ecology are the important fields in the international research of theoretical and mathematical ecology .

  10. 在这节介绍数学生态学的一些基本概念和几个主要数学模型的发展历史,给出常用的单种群模型和具有种间关系的多种群模型。

    In this section we recommend the development history of some mathematical models and a few basic conception about mathematical ecology .

  11. 在数学生态学领域,用数学的方法研究传染病动力学和种群生态学很受重视。

    In the field of mathematical ecology , it is important to use mathematics to study epidemic dynamics and population ecology .

  12. 种群在空间内的分布是数学生态学研究的重要内容,并且已取得一些成果。

    Distribution of population in spaces is important contents of study of mathematical ecology , and a number of results have been obtained .

  13. 生态系统的持久性、稳定性及概周期解的存在性问题是数学生态学理论中一个重要研究方向。

    The persistence , stability and the existence of positive almost periodic solutions of an ecological system is an important direction of mathematical ecology reserch .

  14. 数学生态学的作用是利用两者的自然关系,来帮助我们对生态现象作出科学的解释以及对生态变化作出预测。

    The function of mathematical ecology is to exploit the natural relationship between ecology and mathematics and is to help predict and interpret what we observe .

  15. 随着全球范围的生境破坏和破碎化,集合种群的研究方法已成为数学生态学、理论生态学和保护生物学的重要手段。

    With the global habitat destruction and fragmentation , metapopulation approaches have become one of the most important tools in mathematical ecology , theoretical ecology and conservation biology .

  16. 第一章主要从数学生态学的角度,回顾了种群动态研究的历史,介绍数学生态学研究从非空间模型到空间模型的发展过程。

    In chapter one , we briefly reviewed the history of the development of population models from the view point of mathematical ecology . The transition from non-spatial models to spatial models is also included .

  17. 依据数学生态学理论,采用非线性密度制约形式,将主要气象条件的影响以指标形式引入模式参数,设计并研究了冬小麦穗粒结构产量模式,从穗粒结构途径研究了产量形成过程。

    On the basis of mathematical ecological theory and in the form of nonlinear density restriction , a series of models describing the changes of ear kernel structure and total dry matter weight were designed and studied , in which the parameters were the impact of meteorological conditions .

  18. 非线性动力系统模型是以广义Lotka-Volterra模型为基础发展而来的,广泛用于数学、生态学中,近年来在经济领域的运用取得了不少有意义的成果。

    Nonlinear dynamic system model are evolved from generalized Lotka-Volterra model , widely used in math and ecology .

  19. 近年来,捕食关系是数学与生态学界研究的一个主要课题。

    In recent years , the predator-prey relation has become a very important part in mathematics and ecology .

  20. 它是数学与生态学界研究的一个主要课题,具有非常重要的理论意义和应用价值。

    It has become a very important part in mathematics and ecol-ogy . It has a great value in both theory and application .

  21. 近年来,捕食-食饵关系是数学与生态学界研究的一个重要课题,吸引了越来越多的数学工作者和生态学者的关注。

    In recent years , the predator-prey relation has become a very important part in mathematics and ecology , it has attracted more and more attention from Mathematics and ecologists .

  22. 不仅涉及医学,而且包罗天文学、地理学、哲学、人类学、社会学、军事学、数学、生态学等各项人类所获的科学成就。

    In this book is not only medical science involved , but the scientific accomplishments made by humans in philosophy , anthropology , sociology , strategics , mathematics , ecology and so on .

  23. 生态风险评价属于数学风险论和生态学相交叉的新兴边缘学科。

    Ecological risk assessment belongs to new interdisciplinary subject between risk mathematical theory and ecology .

  24. 在分区的基础下,运用数学模型结合景观生态学方法对北京市2001年土地利用格局的区域差异性进行研究。

    Forestry land and residential and industrial area were the main object to which many land use types changed . ( 2 ) Based on district , the region difference of land use pattern in Beijing was analyzed by math model combined with the method of landscape ecology .