圣维南方程组
- 网络Saint-Venant Equations
-
一维圣维南方程组在非恒定流计算中的应用
Application of one dimensional Saint-Venant equations in non-constant flow
-
在内涝区采用圣维南方程组及一些特殊处理的方法来推求设计洪水位是比较科学的。
In this paper , introducing the way for ascertain design flood water level of inundate area using Saint-Venant equations and some special methods .
-
双消除法(追赶法)是数值求解圣维南方程组隐式差分格式的一种较简便的方法,要求计算机内存少,计算速度快,并易于掌握。
The double sweeping method is a simple and effective for numerically solving Saint-Venant eqs . in implicit scheme .
-
应用经典的圣维南方程组,并采用偏微分方程的数值解法的流域型大范围一维河网水流的数值模拟已经很成熟。
The method used to simulate waterways of large scale by applying classical Saint-Venant and numerical simulation of differential equation was already very ripe .
-
根据圣维南方程组的连续方程,在原有相应涨差模型的基础上,推导出一种新的河道实时洪水预报相应涨差模型。
According to continuity equation of Saint_Venant , and based on the old corresponding rising difference model , the paper developed a new model of channel flood realtime forecasting .
-
作者通过圣维南方程组的有限差分数值解并使用比例控制方式,编写出计算机程序,实现了自动上游控制灌溉渠道系统的计算机模拟。
Based on the numerical solution of Saint Venant Equations and proportional control mode , the author established a computer program for simulating automatic upstream control irrigation canal system .
-
本文依据黄河下游河道的河相关系和简化圣维南方程组,建立了游荡型河流洪水演进的对流&扩散模型。
According to the simplified forms of S-V equations and the flow geometry in lower Yellow River , an advective-diffusion model for flood routing of wandering channels has been developed .
-
本文从常用的二维圣维南方程组出发,对加权残差法中的伽辽金有限元算法作了若干改进。
Based on the common form of the two-dimensional Saint-Venant equations , some improvements in the Galerkin finite element method , one of the weighted residual methods , have been made .
-
模型中河道洪水演算采用基于圣维南方程组的差分解法,流域降雨径流预报采用新安江三水源模型。
In the model , the differential method based on the Saint Venant equations is used to calculate river floods , and the Xin ′ anjiang three water source model is used to predict precipitation and runoff in river basins .
-
它以完全形式的圣维南方程组为依据,上下游边界条件共允许九种组合,提供了显式差分、隐式差分与特征格式共三类九种典型算法。
It is based on the de Saint-Venant system of equations in complete form under nine combinations of upstream and downstream boundary conditions . It provides nine optional and typical methods which are classified into three categories ( i.e.the explicit difference scheme , implicit difference scheme and characteristic scheme ) .