谐振子
- 网络The Harmonic Oscillator;Simple Harmonic Oscillator
-
[harmonic oscillator] 泛指任何与力学定义的谐振子系统具有相同运动方程的事物
-
谐振子在周期运动中是特别重要的。
The harmonic oscillator is an exceptionally important example of periodic motion .
-
电场中带电谐振子在高温弱简并情况下的热力学性质
Thermodynamical property of the harmonic oscillator with electrical charge in the electric field under high temperature and weak degeneration
-
一维多项式非谐振子的REDUCE程序
A reduce approach to one dimensional polynomial anharmonic oscillators
-
C(60)分子的一维谐振子模型
One Dimension Harmonic Oscillator of C_ ( 60 ) Molecule
-
各向异性n模耦合谐振子的精确求解
Exact solution for non-identical n modes coupled harmonic oscillators
-
经典q变形谐振子及其h量子化
Classical q-deformed Harmonic Oscillators and their h quantization
-
Lie代数与OPT:耦合谐振子
Lie Algebra and OPT : Coupled Linear Oscillators
-
线性谐振子与q变形振子量子运动的新描述
New Description for Quantum Motions of Linear Harmonic Oscillator and Q-deformed Harmonic Oscillator
-
非线性非谐振子的SU(1,1)Lie代数
SU ( 1 , 1 ) Lie Algebra of Nonlinear Nonharmonic Oscillator
-
以一维量子谐振子为例,经过分析,认为量子系统经典极限条件也可表示为h→0。
By analysing one-dimensional quantum oscillator , the classical limit conditions of the quantum system also expresses as → 0 .
-
D维q变形谐振子模型
D-dimensional q - deformed harmonic oscillator
-
有限维q非谐振子广义相干态振幅N次方压缩
N-th Power Squeezing of the Field-amplitude on Generalized Single-parameter q-Deformation Coherent State of an Anharmonic Oscillator in a Finite-dimension Hilbert Space
-
研讨了温度为T时量子谐振子系统处在第n态的概率,并讨论了结果的物理意义。
The probability of the quantized harmonic oscillator being in the nth quantum state in a system at temperature T are studied and discussed .
-
利用因式分解方法,重新定义了N(N≥2)维各向同性谐振子的两类升、降算子。
Employing the factorization method , a new definition of four kinds of raising and lowering operators of an N dimensional isotropic oscillator is given .
-
用explicitEuler方法研究含时受迫谐振子的演化及对系统循环初态的讨论
Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states
-
半球谐振子的Q值对半球陀螺的性能指标有重大的影响。
We know the performance of hemispherical resonator gyroscope ( HRG ) is influenced by the Q value of hemispherical resonator .
-
同时,当q→1时,所有结论回复为普通二维谐振子的相关结果。
At the same time , when q → 1 the theory reduces to the common two dimensional harmonic oscillator theory .
-
用泛函Euler方程求解线性谐振子的基态能量和波函数
Solving ground state energy and wave function of a linear harmonic oscillator by Euler equation
-
REDCE语言是用计算机推导解析公式的有力工具,本文用REDUCE语言计算了高次非谐项对非谐振子的效应。
The Reduce language is a useful tool for deriving analytical formula on the computer . We calculate the effect of the high - power anharmonic terms in the anharmonic oscillator .
-
最后,以普通物理中的受迫谐振子问题为例,突出体现了Green函数方法的优点,并进一步说明了Green函数方法应用的普遍性。
The excellence and basic thinking of Green function method is shown because forced harmonic oscillator is discussed , further more , that the Green function method is used widely is clarified .
-
具有含时频率和边界条件的谐振子量子态的Berry相位
The Berry phase of the quantum state of a harmonic oscillator with time dependent frequency and boundary conditions
-
球谐振子径向算符r~(2s)的平均值的解析公式
Explicit Expressions of Average Values of Radial Operator r ~ ( 2s ) for Spherical Harmonic Oscillator
-
进而用(q,r)变形熵讨论了在弱变形的情况下谐振子系统分布的一级关联。
Then , applying this ( q , r ) - deformed entropy , we derive the first-order correction to the Planck distribution of harmonic oscillator system in weak deformation .
-
一维时间相关的经典谐振子是一个SU(1,1)非自治经典系统,是物理学中的一个重要模型。
The one-dimentional classical harmonic oscillator is an su ( 1 , 1 ) nonautonomous classical system which is an important model in physics .
-
用有限元法建立了圆筒谐振子的模型,通过MATLAB软件编程,计算出合理的谐振子参数,对其频率密度特性进行了分析,并给出了振子的振型分布。
FEM Model is made and programmed in MATLAB , reasonable size is worked out , relation between frequency and density is analyzed , and the vibratory mode shape is given .
-
关于双参数量子代数SU(qs)(2)和双参数形变谐振子的若干结果
Some Remarks on a Two-Parameter Quantum Algebra SU_ ( qs )( 2 ) and a Two-Parameter Deformed Harmonic Oscillator
-
关于在Fabry-Perot空腔中的变质量谐振子
Harmonic Oscillator with Variable Mass in the Fabry-Perot Cavity
-
利用泛函极值满足的Euler方程,解出了线性谐振子的基态能量和波函数。
The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum .
-
广义四维谐振子位势的B-S波函数
B-S wave function for a generalized four-dimensional harmonic oscillator
-
线性谐振子势的相对论效应Ⅰ:Klein-Gordon方程
Relativistic effects of linear harmonic oscillator ⅰ: Klein-Gordon equations