置换群

zhì huàn qún
  • permutation group
置换群置换群
  1. 关于n元置换群的一个同构群的注记

    Explanation on an Isomorph Group of Permutation Group of n

  2. Boolean代数上的一个置换群

    A Permutation Group on Boolean Algebra

  3. 此处使用的方法是递归形成存储在每个GUI控件可能值Vectors中的值的积(我们称这些Vectors为“置换群(PermutationGroup)”)。

    The method used here is to recursively form cross products of the values stored in each of the GUI-control-possible-value Vectors ( we will call these Vectors ," Permutation Groups ") .

  4. 运用抽象群和置换群的理论得到:(1)如果有限群G共轭作用在它的所有极小子群上传递,G一定是循环p-群或广义四元数群;

    Applying the theories of abstract groups and permutation groups , the following results are obtained : ( 1 ) If a finite group G acts transitively on all the minimal subgroups by conjugation , G is then a cyclic p-group or a generalized quaternion .

  5. 置换群理论确定等价组态原子光谱项的计算机程序ATEC

    A program ATEC for determination of atomic spectral of equivalent electronic configuration by permutation group theory

  6. 群表示论的物理方法(Ⅱ)置换群亚标准基和酉群Gelfand基

    Physical method of group representation theory (ⅱ) the quasi-standard bases of permutation group and the Gelfand bases of unitary group

  7. 若给出的置换群不是一个Abelian群,则我们可以在这个群中,找一个Abelian子群,因此同样可以用上述方法。

    If the permutation group is not an Abelian group , we can find an Abelian subgroup included in the group , and then we can use the method as above .

  8. 应用置换群的Burnside引理,导出非标定二部分竞赛图和二部分完全有向图的计数公式。

    Using the Burnside 's lemma on a permutation group , this paper derive the enumeration formulas of bipartite tournaments and completely bipartite digraphs .

  9. 我们开始形成包含一组ArrayLists的ArrayList,在其中,每个构成的ArrayLists正好包含第一个置换群的一个元素。

    We start by forming an ArrayList containing a set of ArrayLists , in which each of the constituent ArrayLists contains exactly one element of the first Permutation Group .

  10. 本文用BN&对方法构造性地决定了有限辛群Sp2l(q)的前四类极大子群的一般形式,这些极大子群都归结为置换群S2l的某些子群。

    In this paper we determine constructively four class of maximal subgroups in finite symplectic groups Sp_2l ( q ) using the method of BN-pair and Seitz ' result . These maximal subgroups are reduced to some subgroups of the permutation group S_2l .

  11. 置换群多重可迁的充分必要条件

    Sufficient and necessary conditions on multiply transitivity of a permutation group

  12. 二维混沌置乱矩阵构成置换群的理论和实验证明

    Theoretical and Experimental Proof That 2D Chaotic Arrays Are Permutation Groups

  13. 关于规范场顶角计算的置换群陪集简化方法

    The permutation group coset method in calculations of gauge field vertices

  14. 关于置换群中某些组合问题的计数公式

    On the counting formulae of some combinatorial problems of permutation group

  15. 用置换群解决信息加密问题的探索

    Study on solving information encryption problems by using permutation groups

  16. 置换群运算与证明的数学机械化

    Mechanization of Mathematics of Operations and Proof on Permutation Groups

  17. 无限置换群上一布尔代数的性质

    Quality of a Boolean Algebra on Infinite Permutation Group

  18. 格序置换群的左弱可迁性右肩8例,左肩2例。

    Left weakly 2 - transitivity of lattice-ordered permutation groups two were left .

  19. 细胞自动机置换群加密技术研究

    Encryption Based on the Permutation of Cellular Automata HOMOMORPH-GROUP

  20. 非o-2-可迁格序置换群

    A No Doubly Transitivity Lattice - Ordered Permutation Group

  21. 其它的计数问题引导我们去研究置换群的轨道。

    Other enumeration problems lead us to the study of orbits of permutation groups .

  22. 伴随每个递归步骤,会形成带有一个额外置换群的向量积。

    With each recursive step , cross products with one additional Permutation Group are formed .

  23. 置换群图路由问题研究

    Research for permutation graphs on Routing Problem

  24. l-置换群的弱可迁性

    Weakly Transitivity of Lattice Ordered Permutation Groups

  25. 置换群直积的张量对称类的秩

    The ranks of the symmetry classes of tensors associated with the direct product of permutation groups

  26. 关于置换群的二元生成

    On Two-element Generation of Permutation Groups

  27. 一致序置换群

    On Coherent Ordered Permutation Group

  28. 置换群关于变换后基的强生成集的算法

    A Algorithm for Finding a Strong Generating Set of a Permutation Group Relative to a Changed Base

  29. 关于本原置换群由较低级群生成的问题

    On the Problems of the Generation of the Primitive Permutation Groups by Permutation Groups of Lower Degree

  30. 拉丁方与置换群

    Latin Squares and Permutation Groups