神经网络控制

  • 网络neural network control;nnc
神经网络控制神经网络控制
  1. 基于神经网络控制的船舶航迹自动舵技术

    Technology of Ship Course-control Autopilot Based on NNC

  2. 一种基于模糊B样条基函数神经网络控制的磨削加工系统

    A Grind Manufacturing System Based on Fuzzy B - Spline Neural Network Control

  3. 利用B样条神经网络控制聚合物相对分子质量分布新方法

    Control of molecular weight distribution of polymerization via B-spline neural networks

  4. 基于H∞变结构的不确定机器人模糊神经网络控制

    Fuzzy neural-network control based on H_ ∞ variable structure control for uncertain robot manipulators

  5. 基于不完全微分PID算法的神经网络控制

    The Neural Network Control based on Incomplete Differential PID Algorithm

  6. 基于DSP的飞机全电刹车模糊神经网络控制系统

    Aircraft Electric Braking System Using Fuzzy Neural Network Control Method Based on DSP

  7. 基于多步预测的PID型神经网络控制

    A PID-like Neural Network Control Based on Multi-step Prediction

  8. 输入输出非对称多变量系统的PID神经网络控制

    PID Neural Network Control for Unsymmetry Multivariable Systems

  9. 内燃机活塞裙面加工精度的BP神经网络控制技术研究

    BP Neural Network Control Technique Study on Processing Accuracy of Internal Combustion Engine Piston Skirt

  10. 用进化RBF神经网络控制二级倒立摆

    Controlling a Double Inverted Pendulum Using Evolutionary Radial Basis Function Neural Network

  11. 基于DCS的神经网络控制的工程实现

    Engineering Implement of Neural Networks Control Based on DCS

  12. 混沌系统的RBF神经网络控制设计

    Design of RBF Neural Network Control for Chaotic System

  13. 基于CMAC神经网络控制的精密定位控制系统

    Precise Positioning Control System Based on CMAC Neural Network Control

  14. 神经网络控制系统比传统的PID等控制方法,在大时变、强耦合、大滞后等非线性系统中控制效果有着明显的优势。

    To some traditional PID methods , and Neuron Control system have some obvious predominance in some big temporal variation , close coupling , controller lag nonlinearity system .

  15. Hammerstein系统自适应神经网络控制算法的收敛性分析

    Convergence Analysis for Adaptive Neural Networks Control of Hammerstein System

  16. 目前提出的数字控制策略有数字PID控制、自适应控制、模糊控制、神经网络控制、极点配置法、无差拍控制、预测控制等,这些控制策略各有特点,但都有各自的局限性。

    The proposed control strategies include digital PID control , adaptive control , fuzzy control , neural network control , pole place control , dead-beat control and predictive control .

  17. 为实现方位保持平台高精度快速反应的要求,针对方位保持平台的工作特点,提出了采用BP神经网络控制算法的三级温度控制策略。

    Aiming at the characteristics azimuth holding platforms , in order to achieving fast response , a new three-level temperature control approach based on BP neural network algorithm is presented .

  18. 六自由度并联平台特性分析及其电液位置伺服系统的CMAC神经网络控制

    Analysis of Characteristics and CMAC Neural Networks Controller of Electrohydraulic Servo System of the 6-DOF Paralle Platform

  19. 仿真实验表明,基于多步预测的PID型神经网络控制系统能有效抑制随机干扰,具有较强的适应性和鲁棒性。

    Simulation results prove that this new multi step prediction based on PID like neural network control system can effectively attenuate random noise interference and is more robust and adaptive .

  20. 首次将直接自适应神经网络控制引入双层隔振系统并提出了直接自适应PD神经网络控制方法。

    For the first time the direct adaptive neural network control is induced into two-stage vibration isolation mounting and the method of direct adaptive PD neural network is presented .

  21. 将小脑模型神经网络控制(CMAC)和PID控制结合起来,替代了直接转矩控制中常用的PI控制环节,并且构建了基于MATLAB的电动机控制仿真模型。

    This paper compounds CMAC Neural Network and PID control to replace the common used PI controller in DTC system , presents the simulate model based on Matlab software .

  22. 针对轮胎硫化罐模糊神经网络控制系统的复杂性和难以建立准确模型的特点,提出了一种用模糊神经网络控制的方法,并用PLC加以实现。

    According to the features of the complexity and the precise model that is hard to build in a temperature control system of tire sulphureted jar , a fuzzy neural network control method with PLC is given .

  23. 针对MCGS的可扩充性,利用VB设计PID神经网络控制功能组件,将组态软件和PID神经网络控制有机地结合起来,并给出仿真实例。

    In view of the expansible capability of MCGS , designing the PID neural networks control function module using VB , that organically unifies the configuration software and the PID neural networks control , and produces the simulation example .

  24. 结果表明,汽车TCS神经网络控制算法能根据环境条件自适应地调整控制量,有效消除驱动轮过度滑转,使汽车具有良好的加速性和适应性。

    The results showed that the algorithms could adjust control quantity adaptively according to the circumstance , eliminate excessive slip of driving wheel and make automobile acquire better accelerating performance and adaptability .

  25. 为此在机械臂的神经网络控制中,该文提出复合正交神经网络(CONN)与PID并行控制方法,并对小脑模型(CMAC)与PID并行控制作一比较研究。

    Therefore , a parallel control method of compound orthogonal neural network ( CONN ) and PID is presented , and is compared with a parallel control of CMAC and PID in manipulator neural network controls .

  26. 提出一种复合正交神经网络控制与传统PID控制相结合的复合控制器,仿真结果表明,相对于常规PID控制器,该复合控制器具有自学习和自适应功能,速度跟踪获得了满意的控制效果。

    A compound controller combining traditional PID control with compound orthogonal neural network control is presented . The simulating tests prove that such a kind of compound controller has self-learning and self-adaptive ability compared with traditional PID controller . Its velocity tracking obtains a satisfactory result .

  27. 讨论了一类具有未知死区模型和未知函数控制增益的SISO非线性系统的自适应神经网络控制问题。

    The problem of adaptive neural network control for a class of signal input signal output ( SISO ) nonlinear systems with unknown dead-zone model and unknown function control gain is discussed .

  28. 针对电控汽油机怠速控制要求,提出了一种模糊径向基函数(RBF)神经网络控制方案,在MATLAB环境下进行了控制仿真,获得了比PID、模糊、模糊BP神经网络更好的控制性能。

    In this paper , aiming at control requirement for idle speed of the electronically controlled gasoline engine , a fuzzy RBF neural network control approach is put forward and simulated by MATLAB , and more effective , general fuzzy and fuzzy BP neural network control approaches are obtained .

  29. 通过仿真可以发现,T-S型模糊RBF神经网络控制时,进浆流量能更好地跟踪外部来浆流量,中心位置性能指标和清水损失量都比较小,能达到更好的控制效果。

    By simulating , we can find that the charging slurry flow can better follow the external slurry , the center position performance is small and water loss is low , we can get a better result using T-S fuzzy RBF neural network .

  30. 仿真计算结果表明,TCBR的模糊神经网络控制对静态稳定性和暂态稳定性均具有良好效果。

    The results of simulation calculation show that the fuzzy neural network control possesses good effect for both steady stability and transient stability .