材料色散
- 网络material dispersion
-
除了多级光纤放大器(EDFA)使带宽减小,噪声增大,光纤的材料色散也是对WDM系统影响的重要因素。
Besides multistage EDFA making the bandwidth reduced and noise increased , the material dispersion of optical fibers is also an important factor to affect WDM systems .
-
ZrF4·BaF2系玻璃材料色散性质
Material Dispersion of ZrF_4 · BaF_2 Based Glasses
-
介绍了利用Faraday磁致旋光性原理,测量光学材料色散率的方法。
This paper recommends the method what measure dispersive power of optical material with Faraday 's magnetic optical rotation principle .
-
考虑到实际放大系统光路的可行性和展宽压缩比的要求,并且保证系统的GD曲线处于U型,展宽器和压缩器光栅密度的选择必须和放大器的材料色散相匹配。
Considering for the availability of the practical optical layout and the proper stretching / compressing ratio as well as the U-shape GD curve , the selection of grating 's groove density for the stretcher and compressor should match with the material dispersion in the amplifier stage .
-
对应不同波长的照明光,h-S1L的材料色散作用将对其透射场特性产生影响。h-SIL的分辨率、焦深和聚焦强度对照明光的波长变化非常敏感,都随着波长的变化成周期性的振荡。
The transmitted field characters of h-SIL are affected by the material dispersion with illuminating lights of different wavelengths , The resolution , focal depth , focused intensity of h-SIL are sensitive to the change of wavelength and have a periodic oscillation whh the wavelength 's change .
-
引入材料色散和漏泄模式光线的传输效应,对D。
Considering material dispersion and tunneling ray , the D.
-
通过两种不同处理材料色散方法所得结果比较验证了系统考虑材料色散方法的合理性和必要性;
Rationality and necessity of synthetic material dispersion have been validated by comparing the results from different methods .
-
通过数值计算,得到了材料色散及波导色散随波长和弯曲半径变化的规律。
The variation of material dispersion and waveguide dispersion with wavelength and bend radius is got by numerical calculation .
-
在对光子晶体光纤数值分析时,加入了材料色散对于传输特性的影响。
For numerical simulation of photonic crystal fibers with FEM , the effect of material dispersion is considered in the transmission properties .
-
对紫外激光脉冲在阶跃型多模光纤中的传输特性,包括材料色散、模式色散、非线性效应、耦合方式、光纤功率支撑能力等方面进行了理论分析和实验研究。
The object is to analyze theoretically and test experimentally the propagation characteristic of ultraviolet laser pulse in step index multimode fiber .
-
采用全矢量波束传播法并考虑熔融石英的材料色散,计算分析了不同结构参数对偏振拍长色散曲线的影响。
Full-wave beam-propagation-method is used to calculate influence of different structural parameters on the beat-length dispersion , including the material dispersion of fused silica .
-
结果表明,在1.32μm泵浦下产生了明显的连续谱本底,并认为它是由光纤零材料色散区的宽带参量增益四光子混频产生的。
Results show that considerable optical continuum is formed because 1.32 μ m pumping and its Stokes components are near the zero-material-dispersion range of fibers .
-
将光子晶体光纤的总色散分为波导色散和材料色散两部分分别计算,并利用波导色散的比例性质来改变总色散。
The dispersion of photonic crystal fibers is obtained by the sum of material dispersion and waveguide dispersion , and the latter can be varied by the scaling property .
-
在白光照射下,衍射光学透镜的焦距不仅同材料色散和波长色散有关,而且还同孔径因子有关。
When the diffractive optical lens is illuminated by white light , its focal length not only relates to material dispersion and wavelength dispersion , but also to aperture factor .
-
模拟结果表明,对于一个放大系统,存在一个最佳的材料色散,用它可以获得最大的无色散带宽。
The computer simulation with the formula demonstrates that there exists an optimal material dispersion for an amplification system , with which we can achieve the largest dispersion free bandwidth .
-
利用无量纲色散和波导色散之间的关系单独求解波导色散,波导色散和材料色散之和为光子晶体光纤的总色散。
The total dispersion of photonic crystal fibers is obtained by summing up the material dispersion and waveguide dispersion , the latter being obtained by exploiting the relation between normalized dispersion and waveguide dispersion .
-
本文用有效折射率法讨论了均匀介质条形波导的几何色散和介质材料色散对波导总色散的贡献,并给出了归一化参数表示的通用色散系数曲线。
The contribution of geometry and material dispersion of homogeneous strip optical waveguide to its total dispersion is discussed by means of effective index method . Universal curves are plotted in terms of normalized dispersion parameters .
-
文中提出了一种基于聚合物材料色散模型,通过透射光谱拟合确定薄膜光学常数(包括折射率与消光系数)和厚度的计算方法。
Based on the spectra of transmittance , a photometric fitting method based on dispersion models was developed to determine the optical constants ( including refractive index and extinction coefficient ) and thickness of the active layer .
-
将辅助微分方程(auxiliarydifferentialequation,ADE)法用于线性半导体材料的色散研究。
The auxiliary differential equation method has been used for linear dispersion of semiconductor .
-
用Faraday效应测量光学材料的色散率
Measurement of Dispersive Power of Optical Material with Faraday Effect Principle
-
第二,由于色散会使滤波曲线移动,所以必须考虑材料的色散而后相应地重新设计PIF。
Secondly , we should consider the dispersion of the material to redesign the PIF because dispersion will move the filtering curve in spectrum domain .
-
由于有较大的通光孔径和入射角孔径,AOTF在成像光谱的应用领域有着很大的潜力,但由于TeO2材料的色散造成的图像漂移和模糊问题,阻碍了应用的发展。
Because of the large light and angle aperture , AOTF has quite wide potential in spectral imaging field . While since the TeO_2 has natural dispersion , it will cause scene shift and imaging blur , and hence hinder the application in imaging field .
-
最后对金属材料的色散模型进行了介绍。
At last the dispersion models of metal are introduced . 2 .
-
利用导波光学方法测量光学薄膜材料的色散特性
Measurement of Chromatic Dispersion Characteristics of Optical Thin Films by Guided Wave Optical Method
-
通过对一些材料声子色散曲线的计算和实验结果的比较,表明该方法是简单有效的。
This method is shown to be simple and effective by the comparison between the theoretical calculation and experimental results of phonon dispersion curves of several materials .
-
最后给出一种基于平面波的传输矩阵法,且对于不同晶格常数的光子晶体量子阱结构均有效的数值模拟方法,可用于研究由三维光子晶体材料或者色散材料组成的光子晶体量子阱结构。
A useful numerical simulation method for theoretical discussion as well as for practical application about photonic QW structure of photonic crystals with different lattice constants is proposed .
-
有机聚合物材料折射率色散的研究
Study on Refractive Index Dispersion of Organic Polymer
-
熔石英中的材料吸收、色散和三阶非线性效应是光纤中影响光传输的主要因素。
The major phenomena that affect propagation through fiber are material absorption , dispersion , and nonlinear x ( 3 ) effects associated with fused-silica .
-
常见的产生慢光效应的办法主要有利用高色散的材料或高色散的结构,光子晶体波导就是其中一种可以产生慢光效应的结构。
Common methods to excited slow light is through using high dispersion material or high dispersion structure , in which photonic crystal waveguide is a kind of structure to excite slow light .
-
光学材料折射率和色散的高精度测量技术研究
High Accuracy Measurment Technique for Refractive Index and Dispersion of optical Material