晶格匹配

  • 网络lattice matching;lattice match;lattice-matched
晶格匹配晶格匹配
  1. 传统的晶格匹配理论并不能解释这一异常现象。

    The traditional geometrical lattice matching theory can not explain this abnormal phenomenon .

  2. 从分子识别、晶格匹配、静电作用等方面讨论了矿化过程中有机基质对磷酸钙晶体生长的调制作用。

    The modulation of organic matrix on the growth of calcium phosphate was discussed about the molecular recognition , lattice matching and electrostatic interaction at the organic / inorganic interface .

  3. 含ZnO样本集晶格匹配和热匹配的模式识别分析

    Pattern Recognition Analysis of Lattice-match and Thermo-match for Sample Collection Containing ZnO Semiconductor Material

  4. 分子束外延生长晶格匹配HgSe/ZnTe超晶格

    Molecular beam epitaxial growth of lattice-matched hgse / znte superlattice

  5. 利用动态聚类分析、最小生成树、主成分分析等模式识别方法,对含ZnO半导体材料的样本集中各样本之间在300K时的晶格匹配与热匹配程度进行了分析。

    Some pattern recognition methods including dynamic clustering analysis , minimal spanning tree and principal component analysis have been used to recognize the extents of both lattice-match and thermo-match at 300K for the samples containing ZnO semiconductor material .

  6. 对InP在SiO2光子晶体空隙内的优先生长机制进行了理论分析。影响InP在空隙内优先生长的因素主要有:低压生长,凹角成核,异质同构和晶格匹配。

    Studying the mechanism of the priority of InP growth in the interstices , the factor of affect the priority growth of InP in the interstices include : concave nucleation , low-pressure growth , the same structure of different samples and matched crystal lattice . 7 .

  7. GaInPAs/InP晶格匹配超晶格材料电子态研究

    Studies of Electronic States in GaInPAs / InP Lattice-matched Superlattice

  8. GaInAsP/InP异质结液相外延层晶格匹配的研究

    The study of lattice match in gainasp / InP heterojunction LPE layers

  9. 从无机化合物的晶格匹配筛选可能的纳米复合体

    Filtering Potential Nano-composites from Lattice Matching in Inorganic Compounds

  10. 单分子膜诱导下晶体生长中的晶格匹配

    Lattice Matching in Crystal Growth Induced by Monolayers

  11. 单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配

    Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers

  12. 晶格匹配理论和薄膜材料性质都证实了这种结构的合理性。

    Rationality of the structure was proven by crystal lattice match theory and the properties of thin films .

  13. 通过在核表面生长晶格匹配、宽带隙材料形成核壳结构,具有很好地抗光氧化能力。

    Core / shell nanocrystals formed by growing a lattice-matched , higher band gap material on the top of the core are quite stable against photo-oxidation .

  14. 磊晶:关键与限制-晶格匹配之材料系统;应变层(晶)-厚度上限;应力对能带的影响,特性。

    Epitaxy : Concerns / constraints - lattice-matched systems ; strained layers ( pseudomorphic ) - limits of thickness ; impact of strain on bands , properties .

  15. 生物分泌有机基质通过有机-无机界面处的晶格匹配、立体化学互补,电荷匹配等界面分子识别作用,调控着无机相的结晶过程,并最终形成了具有特定形态的晶体。

    The organic matrix mediates biomineralization process by interfacial molecular recognition , including lattice geometrical matching and stereochemistry structure complementary and electrostatic compatibility , and it gives these crystals special configuration .

  16. 简述了半导体激光器可靠性设计中的模式控制设计、管芯芯片的晶格匹配、结构设计、管芯芯片的金属化(欧姆接触)设计,以及器件的金属化气密封装设计等的设计考虑。

    The mode control of reliability design for semiconductor lasers is considered , aswell as the lattice matching of the chip , the structure design , the chip metallization ( ohmiccontact ), and the metallization air seal encapsulation , etc.

  17. 同时发现衬底晶格是否匹配与C(60)取向膜的生长关系不大,而具有弱表面键的衬底有利于C(60)膜的取向生长。

    Moreover , the substrate with weak surface dangling bands was found to be necessary for the oriented growth of C60 films .

  18. 同时还观察到pHEMT结构晶格不匹配的AlGaAsInGaAsGaAs系统在AlGaAs里产生的应力引起DX中心(与硅有关)能级位置的有序移动。

    At the same time , one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs / InGaAs / GaAs system of P-HEMT structure .

  19. 有机基质与无机晶体的晶格几何匹配是导致生物体内矿物有序生长并具有特殊理化性质的重要因素之一。

    Lattice geometrical matching is one of the most important factors in leading to the oriented nucleation and in affecting the physical and chemical properties of biominerals .

  20. 结果表明:该薄膜中的残余应力主要来源于薄膜同基板材料的膨胀系数和晶格参数不匹配;

    The derivative of the residual stress is mainly the dismatch of expansion coefficient and crystal parameters .