方程论
- 网络Equation theory;theory of equations
-
单一粒径均匀悬浮固-液两相流中球泡的动力学方程论女权主义批评应该缓行
Dynamic Equation of Spherical Bubbles in Solid-liquid Two-phase Flow with Uniformly Suspended Single-diameter Particles
-
在常微分方程论中,微分不等式是研究方程解的各种属性的有用工具。
Among ordinary differential equation equations , differential inequality is a useful tool which helps research on properties of equation-solving .
-
高等代数是以方程论为主要内容的,包括行列式、矩阵理论、二次型、线性空间、线性变换与群论等在内的数学学科。
With equation theory as its main content , higher algebra contains determinant , matrix theory , linear space , linear transformation and group theory .
-
1936年3&6月,法国数学家哈达玛应清华大学和中法教育基金会的邀请来华讲学,对中国数学界尤其是偏微分方程论的发展产生了深远的影响。
Hadamard gave lectures in China from March to June in1936 , which made a profound impact on the development of mathematics in China , especially on the development of partial differential equations .
-
电磁场中的K-G方程相对论传播函数的解法
A Solution Method of Relativistic Propagators for K-G Equations in Electromagnetic Field
-
利用变分关系对模型处理,可以得到问题的动态控制方程。论政府规制均衡及均衡的动态调整
On Regulation Equilibrium and Its Dynamic Adjustment
-
GPS静态绝对定位方程的相对论修正
Relativistic Correction of the Static Absolute Position Equation of the GPS
-
GPS伪距测量方程的相对论修正
The Relativity Correction for GPS Pseudo-range Equation
-
用相对论Brueckner-Bethe-Goldstone方程研究相对论微观光学位
An Investigation of Relativistic Microscopic Optical Potential in Terms of Relativistic Brueckner-Bethe-Goldstone Equation
-
通过将波迹方程与相对论情况下的完全FokkerPlanck方程联合进行求解,研究了寻常波基频电子回旋波从托卡马克等离子体中平面弱场侧发射时的电流驱动。
Electron cyclotron current drive is investigated with the relativistic Fokker-Planck equation incorporated into a ray tracing code in the condition that the O-mode fundamental electron cyclotron ( EC ) waves are launched from the medium plane at the low field side in the paper .
-
建立两相流方程的动力论方法
Set up the equations for tow-phase flows by the method of kinetic theory
-
电流密度方程的相对论协变式
Relativistic covariant for equation of current density
-
指示克立格方程组;论政府绩效评估指标体系的构成与选取
System of indicator kriging equations ; The Composing and Selection of Per for mance Indicator System
-
方程与曲线论〔Ⅱ〕&高次方程分族、分群、分类的根式解
EQUATION AND CURVES ── Radical solution of the family-division , Group-division and classification of higher degree equation
-
在算法上分别用牛顿方程和相对论方程求解质子和电子的运动,以获得强光作用所产生的正离子的动能分布。
Newton equations and relativistic equations were used to solve motions of protons and electrons , respectively .
-
介绍这一系统的原理、构造及操作。从相对论协变性原理出发,得到了电流密度方程满足相对论协变性的自洽展开式。
According to the principle of relativistic covariance , this paper presents the relativistic covariant equation of current density .
-
第二章为曲线的基础知识,主要介绍了曲线的参数方程,曲线论的基本公式,曲率和挠率的几何意义及曲线的光顺理论,重点讨论了曲线的能量优化法。
We mainly present parameter equations of curves , the basic formula of curve theory , the geometric meaning of curvatures and torsions , and the fairing problem of curves .
-
Boltzmann方程是气体运动论中的重要模型。
The Boltzmann equation is an important model in the kinetic theory of gases .
-
采用Born近似解相对论的Dirac方程,得到相对论修正的卢瑟福公式。
In this article , relativity correction of Rutherford formula is derived from the Dirac equation using Born 's approximation .
-
求解Boltzmann模型方程的气体运动论高阶格式应用研究
Application and Study on High Order Scheme of Gas Kinetic for Solving the Boltzmann Model Equation
-
基于Boltzmann模型方程的气体运动论HPF并行算法
Gas Kinetic HPF Parallel Algorithm Using Boltzmann Model Equation
-
给出转动相对论系统的Appell方程,讨论相对论力学的四个新型基本动力学函数;
The Appell equations of rotational relativistic systems are given . Four new basic dynamical functions of relativistic mechanics are discussed .
-
多右端线性方程组在信息论、控制论和计量经济学等领域有广泛的应用。
In the field of information theory , cybernetics and econometrics , linear systems with multiple right-hand sides attract much interest .
-
延迟微分方程在诸如控制论、环境科学、生物学、经济学等应用科学领域有广泛的应用。
Delay differential equations ( DDE_s ) provide a powerful model of many phenomena in ap-plied sciences , such as control theory , environment science , biology , economics and so on .
-
随机微分方程涵盖了常微分方程、概率论、随机过程及随机分析等多个学科的内容,在描述客观现象中起着越来越重要的作用。
Stochastic differential equations relate to ordinary differential equations , probability theory , stochastic processes and stochastic analysis etc. , and have widely applications in many fields to more and more important in representing the phenomena in real life .
-
方程不含有任何非物理自由度,是Schrodinger方程和Lippmann-Schwinger方程的相对论推广。
Including no unphysical degree of freedom the equations are the relativistic generalization of Schrodinger equation and Lippmann-Schwinger equation .