数学规划
- 网络mathematical programming
-
Fuzzy数学规划求解的约束域分割法
Constraint Feild Cutting Method to Solve Fuzzy Mathematical Programming
-
风机微观选址数学规划问题在GIS上实现求解的探讨
Solution to Mathematical Programming Problem of Windmill Micro-location Selection by GIS
-
基于移动Agent技术,对网络中计算节点进行数学规划,结合负载均衡技术达到网络优化配置。
The third is based on mobile Agent , mathematics programming network nodes and optimizing network configuration by load balance technology .
-
其次建立物流网络的Petri网模型图和数学规划模型;
Then Petri model and mathematic planning model of the logistics network were constructed .
-
非光滑多目标数学规划中一般非控解的Lagrange条件
Lagrange Conditions in Nonsmooth and Multiobjective Mathematical Programming
-
β-光滑Banach空间中一类数学规划问题的最优必要条件
Necessary Conditions for a Kind of Constrained Optimization Problems in β - Smooth Banach Spaces
-
利用图论及数学规划方法分析并解决有限状态机验证路径的选择优化,提出一种在仿真验证方法中对SoC有限状态机验证路径进行优化的方法。
An optimization method based-on graph theory and mathematical programming for choosing the SoC FSM verification path is presented in this article .
-
本文主要讨论了应用ABS算法求解一类带有平衡约束的数学规划问题(MPEC问题)的算法。
This paper discusses mainly the application of ABS algorithm into a class of MPEG .
-
将HHT(Hilbert-HUANGTRANSFORM)方法与数学规划方法相结合,用于时变多自由度系统的参数识别。
In combination with mathematical programming , Hilbert-Huang transform ( HHT ) was used in multi-freedom degree system ( MFDS ) to identify the system parameters .
-
求解最小L1-模估计的数学规划方法
The Methods for Solving Minimum L1 - norm Estimation Through Mathematical Programming
-
本文应用数学规划方法,实现了连铸机QC台吊具的结构几何优化。
The structural geometrical optimization of the lift tool on QC table for continuous casting machine is realized by applying the mathmatical programme .
-
组合同伦内点法由Feng等[1]提出,是求解有界区域上的非凸数学规划的一种大范围收敛性方法。
The combined homotopy interior point method ( denoted by CHIP ), was presented by Feng [ 1 ] , is a global convergence method for solving nonconvex programming in bounded sets .
-
在分析影响PCB板组装生产时间的主要因素之后,论文针对此类生产环境建立了以最小化贴片机调整时间为优化目标的数学规划模型。
Making clear the main factor on PCB assembly time in low-volume and high-mix production , the paper builds for the problem a mathematical programming model with minimizing machine setup time as the optimization goal .
-
以收益率最大化投资组合优化模型与风险最小化投资组合优化模型为基础,探讨了一期最小方差集中有效点与n期前沿上权衡点的关系;分析了基于组合偏差风险的数学规划模型。
Based on the maximized return model and minimized risk model of portfolio theory , the relation on one term efficient point of least variance and N term tradeoff point in frontier are discussed , and a mathematical programming model based on compound deviation is analyzed .
-
数据包络分析(DEA)作为一种数学规划方法,已经被广泛用来评价一个决策单元相对于其它决策单元的效率。
Data Envelopment Analysis ( DEA ) is a mathematical programming approach , which has been widely accepted as an effective tool to evaluate the efficiency of a Decision Making Unit ( DMU ) relative to other DMUs .
-
研究了拓扑优化求解算法,主要是优化准则算法(OC)和数学规划算法(MP),推导了基于SIMP模型的优化准则算法和移动渐进线算法。
The OC algorithm and the MMA ( method of moving asymptotes ) algorithm based on SIMP approach are deduced and used for the topology optimization problem of continuum structure .
-
应用数学规划在对弯管进行极限上限分析时,使用Mises屈服函数所计算的塑性耗散功的不可微性可导致收敛困难。
The non-differentiability of the plastic dissipation calculated through the Von-Mises yield function leads to convergence difficulties when using mathematical programming to solve upper bound limit analysis of pipe elbow .
-
线性QVI约束的数学规划的光滑牛顿法
A Smoothing Newton Method for Mathematical Programs with Linear QVI Constraints
-
提出求解含平衡约束数学规划问题(简记为MPEC问题)的熵函数法。
An entropy function method for solving mathematical programs with equilibrium constraints ( MPEC ) is proposed in this paper .
-
本文应用数学规划法和最优设计原理,对BPY型路基边坡压实机的升降机构进行了多目标的优化设计。
A multi-objective optimal design for the lifting mechanism of Model BPY roadbed side slope compactor is carried out using mathematical programming and " optimal design " principle .
-
提出了具有可分离变量和式型目标函数的一类单目标非线性数学规划问题(SNLP)基于最大熵的两相优化解法。
Present two-stage optimization method for single-object non-linear mathematics planning ( SNLP ) based on maximum entropy .
-
由运筹学家Charnes和Cooper发展起来的数据包络分析(DEA)方法,利用数学规划方法估计出有效前沿面,建立的不是统计模型,因此不能做更多的统计分析。
Data envelopment analysis method ( DEA ) developed by Charnes and Cooper estimate the effective frontier using mathematical programming method , which is not a statistical model established , it can not do more statistical analysis .
-
本法避免了逐点搜索,较之一般的数学规划方法如序列无约束最小化方法(SUMT法),更为简便与直观。
Being away from the searching point by point , this method is simpler and clearer than the ordinary mathematical programming method such as the sequential unconstrained minimization techique ( SUMT ) .
-
该算法是一种利用数学规划思想的ACO算法,通过定义不确定条件下的可解集合、待解集合和选解集合将动态配流问题映射为方案树,保证了时间约束条件。
The method is ACO that is one of Mathematical Program , in which time constraints is guaranteed based on defining the possibility break up set , waiting set and choice set to mapping dynamic wagon-flow allocating onto scheme tree .
-
所有模式均为一整数规划问题,本研究配合CPLEX数学规划软体求解模式。
All decision models are formulated as an integer multiple problem and is solved using a mathematical programming solver .
-
数据包络分析(DEA)是评价具有多个输入和多个输出的决策单元之间的相对效率的数学规划方法,Charnes等人于1978年建立了第一个DEA模型,即CCR模型。
DEA is a resultful tool to evaluate the relative efficiencies among Decision Making Units ( DMUs ) with multiple inputs and multiple outputs . Charnes et al set up the first DEA model , i.e. CCR model , in 1978 .
-
本文提出将LTE异构网络结构中的多终端协作定位问题中转化为一个数学规划问题进行分析,并引入了半定规划松弛模型对协作定位问题进行求解,通过数值仿真实验证明了它的可行性。
In this paper , cooperative positioning in the heterogeneous network structure in LTE system will be transformed into a mathematical programming problem , and the semi-definite programming relaxation model will be used to solve the cooperative positioning problem . We firstly proved its feasibility by numerical simulation .
-
对于该优化问题,一般采用遗传算法、模拟退火算法等启发式方法或者整数规划法、Benders解耦法等数学规划方法加以求解。
Generally the optimization problems are solved with help of heuristic methods , such as genetic algorithm ( GA ) and simulated algorithm ( SA ), or mathematical ones containing integer programming algorithm and Benders decomposition method .
-
该模型是一个含有多约束条件的大规模非线性数学规划问题,利用SW-PSO算法对其进行求解,并采用调整策略修正粒子保证了其在可行域中飞行寻优。
The model is a multi-constraint , large-scale , non-linear programming problem . The corresponding adjustment strategies to practical demand are proposed to correct the particle optimizing in the feasible region .
-
本文主要研究求解不动点问题的有效算法,Brouwer不动点定理是一个非常著名的基本定理,它是许多领域中的重要工具,如数学规划、经济、工程和管理等。
This paper studies the problem solving and effective fixed point algorithm , Brouwer fixed point theorem is a very well-known fundamental theorem , which is an important tool in many areas , such as mathematical programming , economics , engineering and management .