拉格朗日乘数法

  • 网络Lagrange Multiplier Approach;lagrange multiplier
拉格朗日乘数法拉格朗日乘数法
  1. 本文使用了拉格朗日乘数法,通过迭代实现了原型滤波器的设计。

    An efficient iterative Lagrange multiplier approach is devel-oped to design the filter banks .

  2. 根据SEEM特性曲线和由效用函数得到的无差异曲线,提出了用于决策的无差异曲线法和拉格朗日乘数法,并据此得到了最优的经济增长速度和经济剩余组合决策;

    Second , this paper proposes two kinds of decision-making methods , non-difference curve methods and Lagrange multiplier methods . The optimal decision of speed of economic increase and surplus is made in terms of SEEM curve and Non-difference curve .

  3. 基于动态CSIT模型估计得到的信道信息,通过拉格朗日乘数法推导出闭式的THP预编码器。

    Based on the dynamic CSIT mode , closed-form solution of Tomlinsion-Harashima precoding ( THP ) is derived through a Lagrangian approach .

  4. 第五章研究了带切矢约束条件的Bezier曲线中的等周问题,是在第四章实现的等周问题的基础上,多加了一个约束条件,并用拉格朗日乘数法解决这个问题。

    The chapter V researches the isoperimetric problem for Bezier curves with tangent vector constraint , which is to add a constraint on the basis of chapter IV and solve the problem using Lagrange multiplier method .

  5. 针对支持向量机在线训练算法训练速度较慢和无法处理边缘支持向量集合为空的缺点,以KKT条件和拉格朗日乘数法为基础,用严格的数学推导得到一种改进的训练算法。

    In order to increase training speed of original on-line support vector machine training algorithm , and to deal with the case of margin support vector set being empty , a new algorithm was obtained by strict mathematical deduction based on KKT condition and Lagrangian multiplier method .

  6. 泛函型约束条件下的拉格朗日乘数法

    Lagrange 's Method of Multipliers for Restricted Conditions of Functional Type

  7. 我们就此学过拉格朗日乘数法的。

    So , then we 've seen the method of Lagrange multipliers .

  8. 现在我们来用拉格朗日乘数法方程。

    Now we try to apply our Lagrange multiplier equations .

  9. 约束极值拉格朗日乘数法的一个充分条件及其推论

    Ample Condition and Deduction of Lagrange Multiplier Rule of Constrained Extreme Value

  10. 基于拉格朗日乘数法计算大坝结构可靠度

    Reliability analysis of dam based on Lagrange multiplier rule

  11. 详细描述了最小二乘法、拉格朗日乘数法及Lemke3种算法的原理。

    Principles of the least square method , Lagrange method and Lemke method are described .

  12. 接下来要讲到的,就是你们可能听说过的拉格朗日乘数法。

    And so what we will see is you may have heard of Lagrange multipliers .

  13. 在满足组合不确定度最小的情况下,利用拉格朗日乘数法进行加权值的求解。

    Under the condition of minimum combined uncertainty , the weight values are calculated by Lag .

  14. 随机结构动力可靠度估计算法的对比分析基于拉格朗日乘数法计算大坝结构可靠度

    Approximate methods for dynamic reliability calculation of stochastic structures RELIABILITY ANALYSIS OF DAM BASED ON LAGRANGE MULTIPLIER RULE

  15. 运用拉格朗日乘数法,以最大制冷量为优化目标,对该系统进行了优化,得到最大制冷量的一般表达式。

    Applying the method of Lagrange multiplier , the system is optimized for maximum cooling rate and gets the rate general expression .

  16. 上述矩阵分解过程可以转化为一个最优化问题,这个问题可以借助增广的拉格朗日乘数法解决。

    The inference process is formulated as a minimization problem , which is convex and can be solved efficiently with augmented Lagrange multiplier method .

  17. 有一个极值问题,也有关于拉格朗日乘数法的,链式法则也会有的,约束条件下偏导数当然不会漏掉。

    Expect one about a min / max problem , something about Lagrange multipliers , something about the chain rule and something about constrained partial derivatives .

  18. 在允许卖空的情况下,运用拉格朗日乘数法求出了效用最大化投资组合的最优投资策略,并证明了其有效前沿和均值-方差投资组合的有效前沿相同。

    Under short sales situation , the optimal investment strategies are obtained by using Lagrange method , and the efficient frontiers ' character is also studied .

  19. 然后利用拉格朗日乘数法与隐函数定理,求出了使其中一不等式局部反向的临界值。

    Furthermore , utilizing the Lagrange method of multipliers and the implicit theorem to work out the critical value which makes one of those inequality locally inverted .

  20. 其中一个是找出一个函数的极小值,极大值,这个函数的变量是相关的,这种方法称为拉格朗日乘数法。

    One of them is to find the minimum of a maximum of a function when the variables are not independent , and that is the method of Lagrange multipliers .

  21. 用拉格朗日乘数法确定天体周日视运动过程中方位变化速度最慢点的位置,从而使有关结论完整化。

    By means of the Lagrange Multiplier , this paper points out the position of celestial bodies when their azimuth varies the slowest during diurnal motion , thus consummating the conclusion concerned .

  22. 通过用拉格朗日乘数法解决一类条件极值问题,得到了其中参数λ与极值问题对应的二次型矩阵的特征根的一个关系。

    In the paper , the relation between the multipliers and the eigenvalue on quadratic form matrix of the problem of constrained extreme value is investigated in solving the problem of constrained extreme value by the method of Lagrange multipliers .

  23. 以二次型形式给出约束极值拉格朗日乘数法的一个二阶充分条件,并用反证法由拉格朗日中值定理及泰勒公式予以证明;

    This paper gives the second order ample condition of Lagrange multiplier rule of constrained extreme value with the quadratic form , and proves it by use of counterevidence with the help of Lagrange theorem of mean value and Taylor formula ;

  24. 建立了多信道数据广播调度的非线性规划模型,并采用非线性规划的拉格朗日乘数法求解该问题,得出多信道广播调度的平方根规则。

    A non-linear programming model is put forward for multi-channel data broadcast scheduling , and Lagrange method is applied to solve this problem . We get the Multi-channel Square-Root Rule ( MSRR ) which indicates the condition to obtain the minimal average AT .

  25. 利用拉格朗日乘数法对带有约束条件的参数曲线进行了优化设计,给出了一种对给定的平面上的数据点进行保形的最小二乘逼近的算法,使得到的逼近曲线是光顺的。

    This article presents a method for shape preserving least squares approximation to the case of planar parametric curves For the convexity and fairness of curves , we adjust the curves using the least squares method and curvature property of curves under certain conditions .

  26. 借助拉格朗日乘数法建立增广的目标函数,提出等耗量微增率准则及静态锅炉模型辨识方法,对耗量函数的性质给出了凸性要求。

    An enhanced target function is built up via Lagrange multiplier and the principle of equal mini rate of consumption increasement and the method of static boiler model analysis are put forward . Also , new requirements on the property of consumption function are introduced .

  27. 拉格朗日乘数法给出了多元函数条件极值的必要条件,本文利用正定二次型理论证明多元函数条件极值的一个充分条件。

    Lagrange multiplier method provides necessary conditions for the constrained extreme value of the function of many variables , so this paper , based on the theory of positive definite quadratic form , proves the sufficient condition for the constrained extreme value of the function of many variables .

  28. 针对渐进图像的速率分配问题建立了数学模型,对模型的求解进行了简化,并采用拉格朗日乘数法,在满足一定的约束条件下实现了速率的最优化分配。

    In the scheme , a math model for the rate allocation of the progressive image is established , the solution of which is simplified , with the optimum allocation of the rate being realized by the Lagrange multipliers method on the condition that a certain constraint is satisfied .

  29. 以单位库存持有成本和单位缺货成本的比值M为拉格朗日系数,应用拉格朗日乘数法求解该模型,并应用边际理论说明了M的实际意义。

    Using the ratio of unit holding cost and cost per shortage occasion M as multiplier , Lagrange multiplier method is applied to solve the problem . The specific meaning of M is also given .