广义导数

  • 网络generalized derivatives
广义导数广义导数
  1. 区域函数的广义导数及其应用

    Generalized Derivatives of a Region Function and Its Applications

  2. 20世纪70年代,相继出现了各种广义导数的概念。

    In the 1970s , a variety of generalized derivatives concepts appeared one after another .

  3. 在Orlicz空间中混合阶广义导数的存在性及其估计(Ⅰ)

    On the Existence and Estimation of the Mixed Generalized partial Derivative in the Orlicz Space (ⅰ)

  4. 应用它们导出了具Slater约束规格的集值优化问题的Benson真有效解的广义导数型Kuhn-Tucker最优性条件。

    Applying these , the derivative type Kuhn-Tucker optimality conditions for vector set-valued optimization problems with Benson proper efficiency solutions are established .

  5. 不动点定理和集值映象的广义导数

    Fixed point theorems and generalized differentiable for multivalued maps

  6. 在一元函数广义导数定义的基础上,提出了多元函数广义偏导数的概念,相应地建立了广义偏导数的运算规则,获得了有关的一些性质。

    Concept and operation rules of generalized partial derivative of multivariate function are given basis on generalized derivative of single variable function in this paper .

  7. 文章提出了一种广义导数的概念,得到了广义导数的运算法则,以及连续函数的中值定理。

    In this paper , we introduce a new concept of generalized derivative , and derive its operational rules and the mean value theorem of continuous functions .

  8. (h,φ)-凸函数的广义方向导数及其性质

    Generalized Directional Derivative of ( h ;φ) - Convex Function and its Properties

  9. Clarke广义方向导数与普通方向导数相等的一个充要条件

    A Necessary and Sufficient Condition for Clarke General Directional Derivative Equals to Common Directional Derivative

  10. 本文给出了局部Lipschitz函数的Clarke广义方向导数与普通方向导数相等的一个充要条件。

    A necessary and sufficient condition that Clarke general directional derivative is equals to common directional derivative for locally Lipschitz function is given in this paper .

  11. 按照第二种途径分析了若干特例之后,作者提出一个称为广义Jaumann导数的作为客观性应力率.它包含了大部分现有的应力率定义,以及Hill的结果。

    Following the second procedure , after analyzing several particular cases , the author proposes a generalized Jaumann flux , which contains the majority of the existing definitions for stress-rate and the Hill 's result as well .

  12. 非凸二层规划的广义方向导数和广义微分

    Generalized Directional Derivative and Differential of Nonconvex Two level Programming

  13. 给出了用凸函数方向导数计算广义方向导数的公式。

    The formula is given for ? calculating ? generalized directional derivative by using the directional derivative of convex functions .

  14. 非完整约束是指含有系统广义坐标导数且不可积的约束。

    Nonholonomic constraint is the constraint that contains time derivatives of the generalized coordinates of the system and is not integrable .

  15. 研究了一些广义系统导数反馈控制方面的问题,说明了应用导数反馈进行区域极点配置的方法。

    The problem of derivative feedback control of descriptor systems is studied . The method of regional pole placement by derivative feedback control is explained .

  16. 由于广义系统导数矩阵的特殊性,有些所要求的性能只通过比例反馈是无法实现的,然而,在一定条件下,导数反馈却是可以实现的,这就显示出了导数反馈控制的优势。

    Because of the specialization of derivative matrix of descriptor systems , some performances could not be realized by proportional feedback , but it could be realized by derivative feedback under some conditions , which implies the superiority of derivative feedback .

  17. F∑-Banach空间(Ⅲ)Fuzzy积分的经典表示和Fuzzy广义测度的导数

    F Σ - measure Spaces and Its Banach Space (ⅲ) The Classical Representation of a Fuzzy Integral and Derivatives of Fuzzy Signed Measures

  18. 广义二阶导数方法与具有时滞的脉冲微分系统的有界性

    Generalized Second Derivative Method and Boundedness for Impulsive Differential Systems with Delay

  19. 广义系统的导数反馈控制

    Derivative Feedback Control of Singular Systems

  20. 本文应用非定常气动力理论计算了刚体运动与弹性运动耦合的飞机运动方程中的非定常气动力及广义气动力导数,给出一种分析飞机总体运动稳定性及颤振特性的统一方法。

    This method can be used to evaluate the unsteady aerodynamic loads and derivatives of elastic aircraft . The equations of motion of an elastic aircraft are presented . And a unified method is employed to analyse the overall body motion stability and the flutter characteristics of an elastic aircraft .

  21. 本节证明了一种Fuzzy积分表为经典积分的表示定理和Fuzzy广义测度的Radon-NiKodym导数即是伴生空间的Radon-NiKodym导数;

    In Section 4 , a representation theorem of a fuzzy integral with classical integral has been proved . Then , the result that Radon-Nikodym derivatives of the fuzzy signed measures are , in fact , Radon-Nikodym derivatives in the adjoint spaces could be established .