完备度量空间

  • 网络complete metric space
完备度量空间完备度量空间
  1. 在度量空间中引入w距离,证明了在完备度量空间中交换映射的3个公共不动点定理。

    The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved .

  2. 称局部紧完备度量空间上的Radon测度为强Radon测度,若每个有界集的测度都是有限的。

    A Radon measure on a locally compact complete metric space is called a strong Radon measure if each bounded set has finite measure .

  3. 证明了在完备度量空间上f是传递的当且仅当f是不可分解的且没有游荡点。

    By generalizing transitivity , the concept of inseparability is presented . We show that on complete metric space , f is transitive if and only if f is inseparable and has no wandering points .

  4. 根据Banach的不动点定理,我们定义了不扩张的进程表达式在这个完备度量空间上的度量指称语义,这项研究工作对形式验证和系统优化都具有重要的理论意义和现实意义。

    Due to Banach 's fixed point theorem , we can define a metric semantics for the contractive process expressions on this complete metric space . This work is important for formal verification and systems optimization .

  5. Hausdorff半距离。在分形几何与集值分析的研究中,采用的是对称的Hausdorff距离所构成的完备度量空间,文章证明Hausdorff半距离空间是上完备空间。

    Hausdorff semi-metric : In the research of fractal geometry and set-valued analysis , the complete metric space with symmetrical Hausdorff distance is utilized . In this paper , the upper completeness of Hausdorff semi-metric space is proved .

  6. 完备度量空间上四个映射的公共不动点

    Common Fixed Points of Four Mappings in a Complete Metric Space

  7. 完备度量空间上图定向自相似测度的局部维数

    The Pointwise Dimension of Graph-directed Self-similar Measures in Complete Metric Spaces

  8. 完备度量空间与线性赋范空间中的不动点

    Fixed Points on Complete Metric Spaces and Normed Linear Spaces

  9. 完备度量空间上迭代函数系统的不变集性质及测度的维数是分形几何研究的主要对象。

    The property of the invariant set and measure 's dimension of the IFS are main objects in the studying of fractal geometry .

  10. 在完备度量空间获得了半紧非扩张映象的近似耦合不动点的存在性和耦合不动点的逼近定理。

    In the paper , We have obtain the existence and the theorems for approximations couple fixed point of semi compact nonexpansive mappings in complete metric space .

  11. 在完备度量空间中给出了弱交换自映象的公共不动点定理,改进和推广了[1~4]中的主要结果。

    In the present paper we establish a common fixed point theorem for weakly commuting self mappings in complete metric space . Our main results improve and extend the results in .

  12. 研究了在完备度量空间中一对模糊映象满足一些特定不等式条件,以及当其截集是中非空有界闭集时,该对模糊映象的公共不动点的存在性问题。

    Does research in a common fixed point theorem of fuzzy mappings in inequality conditions and the cut set is the nonempty closed bounded subsets of , while is complete metric space .

  13. 本文论述了集合上的度量、度量空间的性质、度量拓扑、可度量化空间、完备度量空间、及一阶电路中的度量空间。

    The measurement in set theory , the properties of Metric Space , Measurement Topology , Measurable Space , Perfect Metric Space and its application in first order circuit are explored in this paper .

  14. 在完备度量空间中采用映象的生成轨道方法证明了一类多元压缩型映象的耦合不动点的存在与唯一性,及其迭代收敛性定理。

    By applying the method of span-orbit mappings in a complete metric space , this paper proves the existence and uniqueness , and the iterative convergence theorem of coupled fixed point of a class of multivariate contractive-type mappings .

  15. 本文研究完备度量空间中扩张型映射对的公共不动点问题,主要结果是改进并推广了复合连续满射的某些压缩型映射对存在唯一公共不动点的条件。

    In this paper , we study expansive type mappings in complete metric space . The main re-sulfs are improved and generalized existence of common fixed point for composition continuity and injection a pair of expansive type mappings .

  16. 利用单值映象与集值映象相容或次相容的一些条件,给出了完备度量空间中单值映象对和集值映象对的公共不动点定理。

    With the use of some conditions of compatibility or sub-compatibility of a single-valued mapping with a set-valued mapping , the common fixed point theorems of single-valued mapping pair and set - mapping pair in complete metric spaces are deduced .

  17. 在完备凸度量空间中,运用广义的Ishikawa迭代序列列逼近拟压缩映射对的公共不动点.推广了有关文献中相关的许多重要结论。

    In complete convex metric spaces , we use Ishikawa iterative process to approximate common fixed point of quasi - contractive mapping pair . Our main result presented in this paper generalizes and improves many important results in relevant literature .

  18. 完备度量凸空间上非自映射的一个新的不动点定理

    A new fixed point theorem for non-self-mapping on complete metrically convex metric spaces

  19. 完备凸度量空间中拟压缩映射对的公共不动点迭代法

    Iterative Method of Common Fixed Point for Quasi - contractive Mapping Pair in Convex Metric Spaces

  20. 在两个完备紧致度量空间上满足隐含关系映射的不动点定理

    Fixed Point Theorems for Mappings Satisfying an Implicit Relation on Two Complete and Compact Metric Spaces

  21. 完备凸度量空间中(次)相容和集值广义非扩张映象的公共不动点定理

    Common Fixed Point Theorems for ( sub ) Compatible and Set-Valued Generalized Nonexpansive Mappings inComplete Convex Metric Spaces

  22. 考虑了在有限维空间中包含在某一有界开区域中的所有有界开凸子集所成空间上的拓扑,给出了一个相关的完备的度量空间。

    In finite dimensional space form a bounded open domain , we study some open convex subsets and it 's topology , then give a complete metric space .

  23. 本文在完备凸度量空间中,利用集值和单值映象(次)相容的一些条件,建立了数值广义非扩张映象存在公共不动点的一个充要条件和一个充分条件。

    In this paper , using some conditions of ( sub ) compatibility between a set-valued mapping and a single-valued mapping , we establish a necessary and sufficient rendition and a sufficient condition for set-valued generalized nonexpansive mappings to have a unique common fixed point in complete convex metric spaces .

  24. 在单值映象与集值映象相容或次相容的条件下,给出了完备凸度量空间中集值映象对与单值映象存在公共不动点的一个充要条件,改进和推广了某些已知结果。

    Under the conditions of compatibility or sub-compatibility between a single-valued mapping and a set-valued mapping , a necessary and sufficient condition for set-valued mapping pair and single-valued mapping which have the common fixed point in complete convex metric space are given . Some known result are improved and generalized .

  25. 本文提出了概率度量空间纲的概念,并证明了完备的概率度量空间是概率第二纲集合。

    This paper brings forward the concept of category on probabilistic metric spaces and proves that complete probabilistic metric spaces is a set of the second category .

  26. 第四章,作为本文主要结果的另一个应用,我们在完备的Menger概率度量空间中,建立了几个单值和集值压缩映射的重合点定理和某些不动点定理。

    In chapter 4 , as another direct application of the main results in chapter 2 , we give some coincidence point theorems for single-valued and set-valued mappings in complete Menger probabilistic metric spaces .