含时薛定谔方程

  • 网络time-dependent Schrodinger equation
含时薛定谔方程含时薛定谔方程
  1. 我们对一维模型氢原子光电离的CEPD效应进行了数值模拟的计算机实验,通过对含时薛定谔方程的数值求解,得到氢原子光电离的一些合理结论。

    We performed extensive computer simulations on the CEPD effect on photoionization of hydrogen atom by numerically solving the time-dependent Schrodinger equation .

  2. 而一般具有外加微扰作用力的含时薛定谔方程的求解需要通过李群分解。

    The general time-dependent SchrOdinger equation with external perturbance needs to be resolved through Lie group decompositions .

  3. 介绍了一种用于求解一维含时薛定谔方程的MATLAB矩阵分解算法。

    A MATLAB matrix decomposition algorithm for solving the one-dimensional time-dependent Schr ? dinger equation is presented .

  4. 含时薛定谔方程的精确解

    Exact Solution to the Time - dependent Schrdinger Equation

  5. 介绍了一种新的求解含时薛定谔方程的谱拟合法。

    A new spectral fitting method for solving the time-dependent Schrdinger equation has been developed and applied to the atom in intense laser fields .

  6. 通过数值求解一维短程势含时薛定谔方程,研究了初始粒子数布居对谐波辐射的影响。

    By solving the time-dependent Schrodinger equation with a one-dimensional short range potential , the effect of initial population on the high harmonics generation was studied .

  7. 求解含时薛定谔方程的标准方法由于其计算量与体系的自由度呈指数增长而大受限制。众所周知,标准的方法只适用于不超过五、六个自由度的体系。

    The standard method solving the time-dependent Schrodinger equation is seriously restricted , by which the computational efforts scale exponentially with the number of degrees of freedom .

  8. 在一维量子非线性晶格的研究中,特别是动力学的研究中,求解多粒子体系的含时薛定谔方程是不可避免的。

    In the study of 1D quantum nonlinear lattices , especially in the study of dynamics , it is unavoidable to solve the many-body time-dependent Schrodinger equation .

  9. 第四章,我们用数值求解含时薛定谔方程的方法,研究超分子磁团簇[Mn4]2体系的量子共振隧穿过程;

    In chapter 4 , we study the quantum resonant tunneling in supermolecular magnetic cluster [ Mn_4 ] _2system by means of the numerically exact solution of the time-dependent Schrodinger equation .

  10. 用四个点电荷构造一个简单、新颖的静电势阱,并基于含时薛定谔方程和有限差分时间域方法,研究冷原子在该势阱中的量子力学效应。

    We suggest a novel trap of trapping a neutral atom with static electric field of four point charges , and discuss the quantum effects of the cold neutral atom in the trap .

  11. 通过数值求解含时薛定谔方程计算波函数,然后计算电子运动的量子轨迹,由此得到表征电子衍射行为的实空间几率密度函数和量子轨迹。

    Quantum trajectories were calculated through wave function by a numerical solution of the time-dependent Schrodinger equation . The probability density functions and quan-tum trajectories representing electron diffraction in real space were obtained from the calculation .

  12. 本文利用一维软核势模型建立起描写氢原子在强激光场中的一维含时薛定谔方程,采用了零边界条件,简化了计算过程。

    One-dimensional time-dependent Schr ( o | ¨) dinger equation describing high-order harmonics radiated by one-dimensional hydrogen atom and one-dimensional helium ion in intense laser field was set up , using zero boundary condition to simplify computing .

  13. 采用二阶劈裂算子算法,通过数值求解强激光场中基态氢原子的含时薛定谔方程,计算了不同的激光脉宽下氢原子的电离率和高次谐波。

    The ionization probability and high-order harmonic spectrum of hydrogen atom under different laser pulse are computed by solving the time-dependent Schrodinger equation of hydrogen atom in a intense laser field , in which an algorithm of split-operator is quoted .

  14. 利用分裂算符方法数值求解了真实氢原子在强激光场和静电场作用下的含时薛定谔方程,研究了静电场对强激光场中氢原子产生高次谐波的影响。

    The time-dependent Schrodinger equation of realistic hydrogen atom in intense laser field and static electric field is solved by split-operator method , and the abnormal behaviors of high-order harmonic generation ( HHG ) in intense laser field is investigated , which is caused by a static electric field .

  15. 对普通的径向薛定谔方程和含时的薛定谔方程进行了有限差分法的分析,给出了两种薛定谔方程的有限差分法的离散方程。

    We analyse the common radial and time Schrdinger equation using finite differential approach , get dispersion equations of two kinds of Schrdinger equation by finite differential approach .

  16. 含时线性势非线性薛定谔方程的孤子解

    Exact Soliton Solutions and Interaction for the Nonlinear Schrdinger Equation with Time-dependent Linear Potential

  17. 利用时空变换法求解含时谐振子的薛定谔方程,并对这类问题在物理上的应用作了说明。

    The Schrodinger equation of time - dependent harmonic oscillator is solved by the time space transformation , and its application in physics is presented .