上半平面
- 网络upper half plane;upper plane
-
上半平面双调和方程的Fourier变换解法
The Solution of Fourier Transform to Biharmonic Poisson Equation on Upper Plane
-
介绍了Fourier变换求解线性偏微分方程的一般方法,并探讨用Fourier变换法求解上半平面带边值条件的双调和泊松方程问题。
This paper discusses the solution of Fourier transform for biharmonic poisson equation with the boundary value condition on upper plane .
-
上半平面的Poisson公式的推广
The Generalization of the Poisson Formula on the Upper Half Plane
-
圆柱和上半平面域拓扑积的Hilbert反转公式和合成公式
The Hilbert Formula and Its Composite Formula on the Topological Product of Cylindrical and Half-Place Domain
-
上半平面上Bergman空间的再生核
Reproducing kernel of Bergman space on the upper half plane
-
主要用Fourier变换法讨论第一类椭圆型方程组在上半平面的自然积分方程和Poisson积分公式。
We explore the natural boundary integral equation and Poisson formula of the elliptic equation of the ? rst type in the upper-half plane by using the Fourier Transformation .
-
应用广义函数的理论讨论了比上半平面Hp(p>0)函数广泛的一类解析函数其分布意义下的边值的存在性。
Using the theory of distribution , the existence of distributed boundary value of a set of analytic function , which is more extensive than Hp ( p > 0 ) function in upper ha lf-plane , is discussed .
-
在圆柱和上半平面域拓扑积的特征流形上引入一组奇性积分算子M~2,由此来讨论该区域的Dirichlet问题和Neumann问题的解。
This paper established a group of real singular integral operators on characteristic manifold of topological product of cylindrical and half-plane domains , by which it discussed the solutions of Dirichlet-problem and neumann-problem on this domains .
-
上半平面上的第一类椭圆型方程组的自然积分方程
The Natural Integral Equation and Poisson Formula of an Elliptic System on the Upper-half Plane
-
借助保形变换将单连通区域及其边界化为上半平面与实轴。
With the help of the conformal transformation , we transform a simply connected region and its boundary into the upper half plane and real axis .
-
本文建立了解析函数在上半平面和上半圆内一般间断边值问题解的表示式,并给出这些表示式在非线性椭圆型复方程中的应用。
In the present paper , the authors establish the representations of the general discontinuous boundary value problem for analytic functions in the upper half plane and upper half disk . Moreover the authors give their applications to some nonlinear elliptic complex equations .
-
本文从虎克定律与平衡方程出发,利用复变函数映象的理论.将裂纹发生的矩形区域保角变换到ζ平面的上半平面去。
Originating from Robert Hooke 's law and equilibrious equations , and using the theory of the complex variable function , this paper transfers the rectangle region in which the cracks emerge into the upper-half part of f plane by means of conformal mapping .
-
本文研究实轴上同胚在上半平面的扩张。
In this paper , we study the extensions on the upper half plane of the homeo-morphisms on the real axis .
-
然后通过椭圆函数理论及Jacobisn函数的保角映射,将物理平面上的1/2胞元(矩形区域)映射成像平面的上半平面。
Then , by using elliptical function theory and conformal mapping technique of Jacobi sn function , transfers the 1 / 2 cell ( a rectangle region on physical plane z ) into the upper-half plane ( on mapping plane ζ) .