三重积分

  • 网络triple integral
三重积分三重积分
  1. 通过Fourier变换,使问题的求解转换为两对三重积分对偶方程。

    By using the Fourier transform , the problem can be solved with the help of two pairs of triple integral equations .

  2. 三重积分的Simpson公式及其误差估计

    Simpson 's Rules and Their Error Estimations for Triple Integral

  3. Ω上三重积分优化复化Simpson数值算法

    An optimum numerical method of compound Simpson for the triple integral over the ω region

  4. 那么在一个空间上的区域的三重积分,对标量dV做积分。

    OK , so triple integrals over a region in space , we integrate a scalar quantity , dV .

  5. 计算质量可看成二重或三重积分,这取决于空间维数,取决于密度函数,dA还是。

    And mass will be double or triple integral , depending on how many dimensions you have , dV of whatever density function you have , dA or dV .

  6. 简单地重复一下吧,我们已经得到了Rz,dv的三重积分。

    So , just to recap , we 've got a formula for the triple integral of R sub z dV .

  7. 那么,那将是。。。,抱歉,这和区域中,烟雾总量关于t的导数一样,由u的三重积分给出。

    So , that should be , sorry , that 's the same thing as the derivative with respect to t of the total amount of smoke in the region , which is given by the triple integral of u.

  8. 我将要证明,一个只有z分量的向量场的通量,等于一个三重积分,其中被积表达式为。

    I 'm going to prove that the flux of a vector field that has only a z component is actually equal to the triple integral of , RzdV well , the divergence of this is just R sub z dV .

  9. 在此基础上通过对Fischer的三重积分的直接求解,建立了新的天然河流纵向分散系数计算公式。

    By using the suggested transverse mixing coefficient equation and the direct integration of Fischer 's triple integral , the paper presents a new theoretical equation of the longitudinal dispersion coefficient for natural rivers .

  10. 几个星期后,我们会学习三重积分。

    In a few weeks , we will be triple integrals .

  11. 我们学过的另一种积分是三重积分。

    Other kinds of integrals we have seen are triple integrals .

  12. 我们学过了三重积分。

    Well , remember we were trying to do triple integrals .

  13. 运用对称性简化柱面坐标三重积分计算

    Making use of symmetry to predigest calculation of cylindrical coordinates triple integral

  14. 这等价于在这个区域内部的三重积分。

    That 's equal to the triple integral over the region inside .

  15. 曲面积分在三重积分中的应用

    Application of the curved surface integral in the triple integral

  16. 在柱坐标系下三重积分计算法的探讨

    Discussion on the Calculation of Threefold Integral in a Cylindrical Coordinate System

  17. 三重积分及曲面积分的算法研究

    Research of Calculation Method of Triple Integral and Surface Integral

  18. 现在,在球坐标中进行三重积分。

    So now we 're going to triple integrals in spherical coordinates .

  19. 这与三重积分不同。

    It is not like in a triple integral .

  20. 如果是在4维空间中,通量就表现为三重积分。

    If you were in four-dimensional space it would be a triple integral .

  21. 这就是空间区域中的标准三重积分。

    This is just your standard triple integral over a region in space .

  22. 利用平面投影图形确定三重积分的积分限

    Determing integral intervals in triple integral by projection

  23. 较强条件下三重积分换元公式的一种证法

    A kind of indentification method of transform formulation of threefold integration under stronger condition

  24. 这和计算其他三重积分的方法是相同的。

    It 's just the same way that you would compute any other triple integral .

  25. ,这是建立三重积分的绝佳练习。

    See , this is actually good practice to remember how we set up triple integrals .

  26. 利用函数的奇偶性与积分区域的对称性求三重积分的值

    Evaluating Triple Integration with Odd & Even Property of Function and the Symmetry of Integral Area

  27. 最后一个联系,是联系二重积分和三重积分的。

    OK , and finally , the last bridge , so this was between two and three .

  28. 昨天学习了直角坐标系下,以及柱坐标下的三重积分。

    So , last week we learned how to do triple integrals in rectangular and cylindrical coordinates .

  29. 三重积分积分限的确定一直是教学的难点与重点。

    Determing integral intervals in triple integral while calculating is important and difficult part in advanced mathematical teaching .

  30. 先看看怎么,在球坐标中建立三重积分。

    Well , we have to figure out how to set up our triple integral in spherical coordinates .