solvable group
- 网络可解群
-
The influence of c-normal subgroup on the structure of super solvable group
c~-正规子群对超可解群结构的影响
-
On Some Theorems of π - Solvable Group
有关π-可解群的一些定理
-
On π - Sylow System Theory of π - solvable Group
关于π-可解群的π-Sylow系理论
-
On the Number of Equivalent Classes of Fuzzy Subgroups of a Finite Solvable Group
有限可解群的Fuzzy子群的阶数及其等价类数
-
The appearance and development of the theories of group classes were closely related to the theories of finite solvable group .
群类理论的出现和发展都是与可解群理论密不可分的,它是在有限可解群研究工作的基础上发展起来的。
-
General π - Frattini Subgroups of π - Solvable Group
π-可解群的广义π-Frattini子群
-
Given a p - solvable group G and an irreducible Brauer character χ of G with respect to the prime p.
给定一个p-可解群G以及G的一个关于该素数p的不可约Brauer特征标χ。
-
The Sylow system theory of solvable group is generalized by introducing the concepts of π - Sylow system and π - system normalizer .
通过引入πSylow系与π系正规化子的概念,将可解群的Sylow系理论作以推广。
-
In this paper , we obtain some results of F π - covering subgroups of a finite π - solvable group by using the concept of π - local formation in .
利用[1]中定义的π-局部群系Fπ,得到了有限π-可解群的Fπ-覆盖子群的一些结果。
-
The main results are the following : 1.Let G be a finite solvable group satisfied permutizer condition , then G is a supersolvable group if and only if one of the following conditions is true .
其主要结果是:1。设G是满足置换条件的有限可解群,则G是超可解群当且仅当如下条件之一成立。
-
When all sylow subgroups about G is m-normal subgroups , there is not any sylow subgroups which is normal subgroup , G is not a solvable group .
G的子群全都是m正规的,且没有子群在G中正规,则G不可解。
-
Let G be a solvable group . In this paper , we use the theory of the π - Hall subgroups to characterize the Sylow p-subgroups , p-subgroups of group G. Some previously known results are generalized .
本章运用了可解群G的π-Hall子群的相关理论,在给定的条件下,将有限群的Sylowp-子群、p-子群的正规化子的两个结果推广到π-Hall子群的情形。
-
A Solvable Quantum Group Statistical Model
一种可解的量子群统计模型