黎中
-
解读李黎人生中de四大财富李黎《袋鼠男人》的隐喻艺术
Metaphorical Art in Lee Li 's Kangaroo Man
-
水在以对黎政策中的地位和作用
The Status and Function of Water in Israeli Policy Against Lebanon
-
关于子流形在某些黎曼流形中的pinching问题
Some Pinching Problems about Sub Manifolds in Some Riemannian Manifolds
-
它告诉我们黎曼流形中的测地C的Morse指标等于C上的共轭点的个数(个数按重数计算)。
It tells us in Riemannian manifold , the Morse index of geodesic C equals to the numbers of the conjugate points of C ( 0 ), each counted with its multiplicity .
-
首先得到一个推广的Simons型积分不等式,然后用它给出共形平坦黎曼流形中紧致极小子流形对外围空间的一个拼挤定理。
The author first works out a generalized Simons inequality , then proves a pinching theorem of minimal submanifolds to the ambient Riemannian manifolds by using the generalized inequality .
-
本文讨论了局部对称共形平坦黎曼流形中具有平行中曲率向量子流形的截面曲率和第二基本形式长度平方的Pinching问题。
In this paper , we discuss pinching questions of the length of the second fundamental form and the sectional curvatures of submanifolds with parallel mean curvature in a locally symmetric and conformally flat Riemannian manifold .
-
在黎曼几何中,带有左不变黎曼度量的幂零和可解李群具有重要作用。如:它们出现在非紧致黎曼对称空间的等距群的Iwasawa分解中;
Nilpotent and solvable Lie groups with left-invariant Riemannian metrics play a remarkable role in Riemannian geometry .
-
接着在第二章中讨论了局部对称完备黎曼流形中一类子流形关于第二基本形式模长平方的积分不等式及其Pinching问题,从而推广了[6]中的结论。
Then we obtain an integral inequality about the square of the norm of the second fundamental form S of submanifolds in a locally symmetric Riemann manifold and discuss its Pinching problem , which extend the conclusion of [ 6 ] .
-
其间,导出了其壳体黎曼空间中的Green-Lagrange应变张量和第二类Piola-Kirchhoff应力张量的表达形式,并通过虚功原理,建立了薄壳结构的非线性平衡关系。
Also derived in the paper are the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor in the Riemann space of the shell . Finally , on the basis of the virtual work , the non-linear equilibrium equations of thin-shell structures are developed .
-
曲率是黎曼几何中的热门研究课题。
Positive curvature has been a frequent subject in Riemannian geometry .
-
关于非正定的黎曼空间中的运动群
On groups of motions in a Riemannian space with indefinite metric
-
拟常曲率黎曼流形中的2-调和子流形
The 2 - harmonic Submanifold in Quasi - constant Curvature Riemann Manifold
-
黎曼流形中运动群不变量
The Invariant of the Group of Motions in Riemann Manifold
-
黎曼流形中一类半线性方程的群分析
The group analysis of a sort of semi-linear equations in Riemann manifolds
-
局部对称黎曼流形中某类超曲面的刚性定理
Rigidity Theorems for Some Hypersurfaces in a Locally Symmetric Manifold
-
拼挤黎曼流形中F-调和映射的稳定性
Stability of F - Harmonic Maps in Pinched Riemannian Manifolds
-
关于黎曼几何中的法圆公理
On the axiom of normal circles in Riemannian manifold
-
黎曼流形中曲率张量的基本性质
Basic properties of the curvature tensor in Riemannian manifold
-
共形平坦黎曼流形中具有平行第二基本形式的超曲面
On hypersurfaces in a conformally flat Riemannian manifold with parallel second fundamental form
-
本文研究了局部对称伪黎曼流形中的子流形,全文分为两章。
In this thesis , we study the submanifolds in locally pseudo-Riemannian manifold .
-
黎曼流形中常平均曲率子流形的第一特征值
First Eigenvalue on the Submanifold with Constant Mean Curvature in a Riemannian Manifold
-
局部对称黎曼流形中的全脐超曲面
Full Umbilical Hypersurface in Locally Symmetric Riemannian Manifold
-
非负常曲率黎曼流形中的子流形的拓扑
On the topology of submanifolds immersed in a Riemannian manifold of nonnegative constant curvature
-
一般伪黎曼流形中的极大类空子流形
Maximal spacelike submanifolds in a pseudo-Riemannian spaces
-
在带有奇异性的黎曼流形中具有零曲率、负曲率和指定曲率的全共形尺度
Complete conformal metrics with zero , negative , prescribed scalar curvature in Riemannian manifolds with Singularities
-
局部对称伪黎曼流形中的子流形
Submanifolds in Locally Symmetric Pseudo-Riemannian Manifold
-
拟常曲率黎曼流形中带有平坦法丛和平行第二基本形式的子流形
Submanifolds in quasi-constant curvature Riemannian manifold with parallel the second fundamental form and flat normal bundle
-
常曲率黎曼流形中具有平行中曲率向量的紧致伪脐子流形
The compact pseudo-umbilical submanifold with parallel mean curvature vector in the Riemannian manifold with constant curvature
-
其中,紧黎曼流形中的一致凸邻域在得到相应逼近阶过程中起着十分关键的作用。
The uniform normal neighborhoods of a compact Riemannian manifold play a central role in deriving the approximation order .
-
第二部分是讨论了黎曼流形中的一些几何问题,主要是将欧氏空间平行射线的概念推广到一般黎曼流形,并研究其所具有的性质。
We generalizes the concept of the parallel rays of Euclidian space to a complete noncompact Riemannian manifolds and discuss its properties .