阶乘
- factorial
-
一个N阶乘问题的求解算法及相关应用分析
The algorithm and analysis of relative application for one N factorial problem
-
数据部分在标记为number的空间中存放有我们所要计算的阶乘。
The data section holds the value we want to compute the factorial of in a space labeled number .
-
所以不包含N的阶乘。
So there 's no N factorial involved here .
-
再除以NA的阶乘,对B同样。
Divided by NA factorial times the same thing for B.
-
任意k+1个相邻自然数k次方的k次差等于k阶乘
K Difference of k Power of Arbitrary k + 1 Adjacent Natural Numbers Equal to k Factorial
-
下面是RyanDavis提供的使用C编写的一个阶乘计算方法的示例
Ryan Davis'example of a factorial calculation method written in C
-
就是说,现在我们要除以NA的阶乘乘以NB的阶乘的积。
That is , now we have to divide by NA factorial times NB factorial .
-
探讨阶乘矩识别不同规律控制下过程的可行性,以期为DNA编码识别等提供可能的工具。
The effectiveness of factorial moments to identify processes under different control rules is investigated in this paper to present tools for identifying coded area .
-
阶乘的一个有趣特性是,某个数的阶乘等于起始数(startingnumber)乘以比它小一的数的阶乘。
An interesting property of a factorial is that the factorial of a number is equal to the starting number multiplied by the factorial of the number immediately below it .
-
利用单事例阶乘矩方法计算了NA27数据的事例空间矩Cp,q(M)。
The event-space moments C p , q ( M ) have been calculated using the method of single-event factorial moments .
-
可以用与Fibonacci序列基本相同的方式对待阶乘。
You can think of factorials in much the same way as Fibonacci sequences .
-
关于阶乘的Simmons猜想
On Simmons ' Conjecture Concerning Factorials
-
所以Q就是小q的大N次方,是粒子数目,the,number,of,particles。,然后我们知道你还要除以N的阶乘,以避免对不可分辨,的构型的重复计数。
So Q is just little q to the capital N power , N And then we 've seen you have to divide by N factorial to avoid the overcounting of configurations that are in fact not distinguishable .
-
计算了阶乘之后,现在需要用printf将其打印出来。
After computing the factorial , you now want to print it out using printf .
-
400GeV/cpp碰撞中的多粒子关联、阶乘累积矩和关联积分
Multiparticle Correlations , Factorial Cumulant Moments and Correlation Integrals in pp Collisions at 400 GeV / c
-
本文用阶乘矩方法分析了入射能量3.7AGev的氧离子与核乳胶相互作用中的间歇行为。
The intermittency of 3.7 A GeV oxygen induced emulsion interactions has been studied by using the method of scaled-factorial-moments .
-
使用包含两个参数的一般阶乘,第一类和第二类Cauchy数被统一为广义Cauchy数。
Cauchy numbers of the first and the second kind can be unified into the generalized Cauchy numbers by starting with transformations between generalized factorials involving two arbitrary parameters .
-
在大多数教程中可以发现的大多数经典Haskell函数都是递归的数学函数,例如Fibonacci函数和阶乘。
The classic Haskell functions that you 'll find in most tutorials are recursive math functions , such as Fibonacci functions and factorials .
-
发现:三维归一化阶乘矩(NFM)的分布呈现出很好的标度特性;
The normalized factorial moments ( NFM ) show good scaling properties in isotropical partition of phase space ;
-
在开始介绍SPU汇编语言之前,先来看一个通过递归算法计算32位数的阶乘的简单程序。
To begin looking at SPU assembly language , I will enter in a simple program for calculating the factorial of a32-bit number using a recursive algorithm .
-
在高能碰撞中,e+e-湮没的电荷多重性可用负二项分布很好地描绘.阶乘矩F2、F3和F4仅由3k表示出来。
Charged particle multiplicity distributions for e + e-annihilation are shown to be very well described by a negative binomial distribution in high energy collisions . The factorial moments F2 , F3 and F4 are given in terms of 3k .
-
首先,在冲度坐标系中,选取快度y,横动量pt和方位角φ为相空间变量,对多粒子末态相空间进行各向同性分割,计算三维归一化阶乘矩(NFM)。
And in the thrust coordinate system , choose the rapidity y , transverse momentum pt , azimuthal angle φ as the variables in the phase space . With isotropic partition of the chosen phase space , calculate the three-dimensional normalized factorial moments ( NFM ) .
-
α模型中不固定多重数下的阶乘矩、粒子数关联矩
Factorial Moments and Factorial Correlations in α Model for Non-Fixing Multiplicity
-
相对论重离子碰撞中单事件阶乘矩的分析
Analysis of single event factorial moment in relativistic heavy ion collision
-
这极大地限制了阶乘函数的可能范围。
This limits greatly the possible range of your factorial function .
-
一种基于阶乘脉冲编码的嵌入式语音频编码器
An Embedded Speech and Audio Codec based on Factorial Pulse Coding
-
当需要阶乘时,将从该表中读取阶乘。
When factorials are needed they are read from the table .
-
阶乘矩识别不同规律控制过程
Identifying Processes Under Different Rules by Means of Factorial Moments
-
阶乘幂多项式及其基本恒等式
The Polynomial of Factorial Powers and It 's Basic Identities
-
可见,通过对事件阶乘矩erraticity的分析,根本就观测不到任何动力学起伏。
No dynamical fluctuation has been observed through event factorial moments analysis .