组合恒等式
- 网络combinatorial identity
-
用代数方法证明一个组合恒等式
Algebraic proof for the combinatorial identity
-
Cauchy组合恒等式的多种推广&兼谈幂级数一定理及其应用
The Generalization of Cauchy Combinatorial Identity ── on a Theorem and its Applications to Power Series
-
利用卷积公式,得到完全i-部图的计数公式(第二章),进一步研究了有关完全i-部图的组合恒等式,并通过N((?)
By using of formulas of convolutions , the author obtains the counting formulas and combinatorial identities of complete i-partite graphs ( see Chapter 2 ) .
-
若干组合恒等式证明及广义的Bernoulli多项式、Euler多项式探析
Combinatorial Identities ' Proof and Research on the Generalized Bernoulli and Euler Polynomials
-
孪生组合恒等式(十)&推广Fibonacci数与推广Lucas数类型
Combinatorial Twin Identities (ⅹ): Generalized Fibonacci 's Number and Generalized Lucas 's Number Type
-
本文给出了第二类Stirling数的又一种一般表达式并从表达式(1)推出了一种新的组合恒等式其中P≥1。
Another general expression of stirling number of the second class is given and a new sort of combinatorial identities ( p ≥ 1 ) is obtained .
-
涉及广义Fibonacci数的组合恒等式
Combinatorial Identity Involving Generalized Fibonacci Numbers
-
利用这一表示,导出了若干q变形的组合恒等式,并用来证明了变形的双模Fock空间一种完备性关系。
From these developments , several useful q-deformed combinatorial identities are derived anti a new completeness relation in the q-deformed two-mode Fock space proved .
-
Vandermonde类型行列式与组合恒等式
Vandermonde typed determinant and combinatorial identity
-
Riemann-Zeta函数的超几何级数方法和组合恒等式
Hypergeometric Series Method for Riemann-Zeta Function and Combinatorial Identities
-
利用LagrangeBürmann反演公式得到了Vandermonde卷积公式,由此得到Abel恒等式的特殊情形和一些很有意义的组合恒等式。
In this paper , a Vandermonde-type convolution formula by using the Lagrange-B ü rmann inversion formula is presented . Furthermore , in virtue of this formula , the classical Abel identity as specific case and some significative combinatorial identities are obtained .
-
提出相伴数的定义,采用数学机械化的方法给出了相伴数的发生函数(第六章),给出了相伴数与Pell数,Fibonacci数和两类Chebyshev多项式之间的组合恒等式。
The author proposes a concept of associated numbers ( see Chapter 6 ), gives the generating functions by mechanized method , and discusses combinatorial formulas on associated numbers , finally , obtained a number of combinatorial identities related to Pell numbers , Fibonacci numbers and Chebyshev polynomials .
-
第二章介绍Wang-Ball曲线的定义及性质,以及Wang-Ball曲线的递归求值算法,利用Wang-Ball基函数的对偶泛函,作者在这里给出Wang-Ball曲线的显式细分算法,并由此导出几个计算组合恒等式。
Chapter two is focused on the Wang-Ball curves , including definition , properties and recursive algorithms . Using the dual functional of the Wang-Ball basis , the author derives the subdivision algorithms for the Wang-Ball curves for the first time and then obtains some identical equations of calculation combination .
-
古典概型在排列组合恒等式证明中的应用
Application of Classic Probability Model in Proving Permutation and Combination Identical Relation
-
二类切比雪夫多项式积和的几个组合恒等式
Some identical relations about the sum of Chebyshev polynomials product
-
用概率论的思想证明组合恒等式
Proving Equations of Combination by the Theory of Probability
-
刚玉宝石矿物新型组合恒等式
PRECIOUS STONES OF THE CORUNDUM MINERAL GROUP Combinatorial Identities of the New Type
-
J.Matrix定理的另一个推广及其在组合恒等式上的应用
Another generalization of I. J. matrix theorems and its application in combinatorial identities
-
用求导法则证明一类组合恒等式
The Proof of a Class of Combined Identity
-
两类组合恒等式的过渡方法
Transition method for two classes of combinatorial identities
-
两个组合恒等式的统一推广
The unified generalization of two combinatorial identities
-
以二项式作为生成函数,给出了几个组合恒等式证明。
In this paper , some combinatorial identities are proved based on binomial generating function .
-
反演技巧在组合恒等式中的应用
Applications of Inversion Techniques in Combinatorial Identities
-
孪生组合恒等式(二)
Combinatorial Twin Identity of the Type (ⅱ)
-
孪生组合恒等式(六)&三角类型
Combinatorial Twin Identity ⅵ: Trigonometric Type
-
关于几个组合恒等式的证明
The Proof of Some Combination Identities
-
有关二项式系数的2个组合恒等式
Two Combinatorial Identities Concerning Binomial Coefficients
-
本文运用形式幂级数的技巧,证明了一个重要的组合恒等式。
In this paper , an important combinatorial identity is obtained by means of the formal power series .
-
三个新的组合恒等式
Three New Combinatorial Identities
-
关于卷积型组合恒等式的格路方法(Ⅱ)&赋权格路的枚举函数方法
On the Lattice Path Method in Convolution Type Combinatorial ldentities (ⅱ) & The Weighted Counting Function Method on Lattice Paths