开普勒方程

  • 网络The Kepler Equation
开普勒方程开普勒方程
  1. 其物理意义,开普勒方程是关于行星运动微分方程组的一个积分,由于引入了辅助量E,使数学表达式大为简化。

    It also has its physical significance . Kepler equation is an integral of differential equation set . The introduction of assistant quantity E leads to the simplification of mathematic expression .

  2. 开普勒方程的几何意义和物理意义

    The Geometrical and Physical Meaning of Kepler 's Equation

  3. 利用逐次逼近方法求解开普勒方程及其推广

    The Application & Extension of Gradual Approach in the Solution of Kepler 's Equations

  4. 这些变形包括三维各向同性谐振子径向方程、开普勒径向方程、Morse势s态等问题。

    These include the radial equation of the three-dimensional isotropic harmonic oscillator , the radial equation of Kepler 's problem , Kepler 's problem in parabola coordinates , and s state problem of Morse potential .

  5. 用赝角动量方法直接求解球坐标下束缚态开普勒径向方程。

    By using the pseudo angular momentum method , the radial equation for bound state of Kepler 's problem is solved and the analytic expression for eigenstate is derived .

  6. 针对椭圆轨道上空间飞行器的编队飞行,基于开普勒轨道方程推导了一组新的相对运动方程,该方程组采用轨道要素表示,可直接用于编队的轨道设计。

    Based on the Kepler 's equation , a new set of relative motion equations with elliptical reference orbits were derived . The equations are expressed by orbit elements , and can be used directly for formation flying orbit design .