初始条件敏感性
-
TheButterflyEffect《蝴蝶效应》蝴蝶效应是混沌理论中的一个重要概念,它是指对初始条件敏感性的一种依赖现象:输入端微小的差别会迅速放大到输出端。
The title refers to the metaphorical butterfly effect , a popular principle in chaos theory which states that in any dynamic system , small initial differences may over time lead to large unforeseen consequences 。
-
它的初始条件敏感性,伪随机特性与宽功率谱特性使其在保密通信领域有着巨大的潜力。
Its sensitivity to initial conditions , pseudo-random features and a wide power spectrum of characteristics that a confidential communication has great potential .
-
对实验结果感到非常好奇,洛伦兹开始尝试用数学原理解释大型复杂的系统(如气候)对初始条件敏感性的依赖现象。
Intrigued by the results , Lorenz began creating a mathematical explanation that would show the sensitive dependence of large , complex systems like the weather .
-
SOFM算法比起LBG算法在矢量量化码本形成方面有许多的优点,初始条件的敏感性低,能够产生较低平均失真的码本,在图像向量编码中得到广泛的应用。
The SOFM algorithm compares the LBG algorithm this to form the aspect in the vector quantization code to have many merits , the initial condition sensitivity is low , can have the codebook which low distorts equally this , obtains the widespread application in the image vector coding .
-
混沌的特性主要有伪随机性、遍历性和对初始条件的敏感性。
Chaos has the following main characteristics : quasi-randomness ;
-
并购绩效对初始条件的敏感性使得传统的线性研究范式已经失效。
MA performance sensitivity to initial conditions makes the traditional linear paradigm has been ineffective .
-
四川盆地西部暴雨对初始水汽条件敏感性的模拟研究
Numerical Simulation on the Sensitivity of Heavy Rainfall over the Western Sichuan Basin to Initial Water Vapor Condition
-
混沌对初始条件的敏感性决定了在其可预测范围内,实现长期预测十分困难。
Owing to the strong sensitivity of chaotic system to initial conditions , it is highly difficult to make long term prediction .
-
混沌信号对初始条件的敏感性和似随机性的特点,非常有利于应用在保密通信系统中。
These chaotic characters of sensitive dependence on initial conditions and random-like behavior make the chaos signal be fit for applying in secure communication .
-
以混沌神经网络为基础,研究其非线性动力学特性、混沌吸引子轨迹以及对初始条件的敏感性,实现混沌神经网络的动态联想记忆功能。
Dynamic associative memory and essential characteristics of chaotic neural network is dealt with : nonperiodic chaos , chaotic attractors , and sensitivity to starting condition .
-
混沌是一门新兴科学,由于其有对初始条件的敏感性、貌似随机的行为、连续宽带功率谱等特征,它有很多潜在的应用价值,因此混沌成为了一门热门的话题。
Chaos is a newly developed subject . Because of its characteristics of sensitivity to initial condition , it has many potential applications . So chaos has become a popular topic .
-
混沌系统具有不确定性、伪随机性、不可预测性及对初始条件的敏感性等基本特性,因而能够很好的满足密码学的要求,非常适合作为保密通信的载体对数字图像进行加密处理。
Chaotic systems , with the basic characteristics of uncertain , pseudo-randomness , unpredictability and sensitivity to initial conditions , can well meet the requirements of cryptography , therefore , it is very suitable as a carrier of secure communication to encrypt digital image .
-
由于非周期性连续带宽频谱是混沌信号所具有的特点,并且它还有类似噪声以及对初始条件的极端敏感性等特点,非常有利于应用在保密通信系统中。
Chaotic signal has the aperiodic continuous bandwidth spectrum , noise-like and the sensitivity on initial value . These properties make the chaos signal be fit for applying in secure communication and information encrypting .
-
而混沌映射具有伪随机性、遍历性、对初始条件的高度敏感性等良好特性,这些特性与密码学中的扩散和混淆原则联系紧密,使得其特别适合图像加密。
Chaotic maps have many desirable properties such as pseudo-randomness , ergodicity , high sensitivity to initial conditions , and these properties have tight link with the two principles of the cryptography that is confusion and diffusion .
-
混沌动力系统对初始条件的极端敏感性,能产生大量的非周期、连续宽带频谱、似噪声同时可确定可再生的混沌信号,因而混沌系统特别适用于保密通信领域。
The chaotic system is highly sensitive to their initial conditions , so it can generate a large number of contiuous broadband frequency spectrum , non-periodic , noise-like , yet deterministic and reproducible signals , which is very useful for secure communications .
-
提出一种基于混沌迭代映射的动态分组密码加密算法,充分利用了混沌的遍历性、伪随机性及对初始条件和参数的敏感性等特性。
Based on the properties of chaos such as the random-like behavior , ergodicity , and the sensitive dependence on initial conditions and parameters , a new block encryption cipher is presented .